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a b s t r a c t

Current malware detection and classification approaches generally rely on time consuming and knowl-
edge intensive processes to extract patterns (signatures) and behaviors frommalware, which are then used
for identification. Moreover, these signatures are often limited to local, contiguous sequences within the
data whilst ignoring their context in relation to each other and throughout the malware file as a whole.
We present a Deep Learning based malware classification approach that requires no expert domain
knowledge and is based on a purely data driven approach for complex pattern and feature identification.
© 2018 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In law enforcement agencies throughout the world, there are
growing digital forensic backlogs of unimaged, unprocessed, and
unanalyzed digital devices stored in evidence lockers (Scanlon,
2016). This growth is attributable to several compounding factors.
The sheer volume of cases requiring digital forensic processing
extends far beyond digitally executed crimes such as phishing,
online sharing of illicit content, online credit card fraud, etc., to
“traditional” crimes such as murder, stalking, financial fraud, etc.
The volume of data to be analyzed per case is continuously growing
and there is a limited supply of trained personnel capable of the
expert, court-admissible, reproducible analysis that digital forensic
processing requires.

In order to address the latter factor, many police forces have
been implementing a first responder/triagemodel to enable on-site
evidence seizure and securing the integrity of the evidence
gathered (Hitchcock et al., 2016). Thesemodels train field officers in
the proficient handling of digital devices at a crime scene enabling
the available expert digital investigators to remain in the laboratory
processing cases. In this model, the first responders are not trained
in the analysis or investigation phase of the case, but can ensure the
integrity and court-admissibility of the gathered evidence.
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While physical resourcing in terms of hardware, training first
responders, and increased numbers of expertly skilled personnel
can increase an agency's digital forensic capacity, the digital
forensic research community has identified the need for automa-
tion and intelligent evidence processing (Sun, 2010). One of the
more labor intensive and highly-skilled tasks encountered in digital
forensic investigation is malware analysis. A common technique for
analyzing malware is to execute the malware in a sandbox/virtual
machine to gain insight to the attack vector, payload installation,
network communications, and behavioral analysis of the software
with multiple snapshots taken throughout the analysis of the
malware lifecycle. This is an arduous, time-consuming, manual task
that can often span over several days. A survey of digital forensic
examiners conducted by Hibshi et al. (2011) found that users are
often overwhelmed by the amount of technical background
required to use common forensic tools. This results in a high barrier
to entry for digital investigators to expand their skillset to incor-
porate additional topics of expertise, such as malware analysis.

Artificial Intelligence (AI) combined with automation of digital
evidence processing at appropriate stages of an investigation has
significant potential to aid digital investigators. AI can expedite the
investigative process and ultimately reduce case backlog while
avoiding bias and prejudice (James and Gladyshev, 2013). Over-
views of the applications of AI to security and digital forensics are
provided in (Franke and Srihari, 2008) and (Mitchell, 2014). A
number of approaches have been implemented to aid digital
forensic investigation through AI techniques (Mohammed et al.,
2016; Rughani and Bhatt, 2017), automation (In de Braekt et al.,
2016), and big data processing (Guarino, 2013).
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1.1. Contribution of this work

The contribution of this work can be summarized as:

� An overview of existing techniques for malware analysis from a
manual and automated perspective.

� An approach to enable malware classification by malware
analysis non-experts, i.e., no expertise required on behalf of the
user in reverse engineering/binary disassembly, assembly lan-
guage, behavioral analysis, etc.

� Without using complex feature engineering, our deep learning
model achieves a high accuracy of 98:2% in classifying raw bi-
nary files into one of 9 classes of malware. Our model takes
0.02 s to process one binary file in our experiments on a regular
desktop workstation; this short processing time is of potential
practical importance when applying the model in reality.

� Our one dimensional representation of a raw binary file is
similar to the image representation of a raw binary file (Nataraj
et al., 2011); but it is simpler, and it preserves the sequential
order of the byte code in the binaries. The sequential repre-
sentation makes it natural for us to apply the Convolutional
Neural Network - Bi Long Short Term Memory architecture
(CNN-BiLSTM) on top of it; helping us achieve better perfor-
mance than using the CNN model alone.

2. Literature review/state of the art

There is a growing need for non-expert tools to perform digital
evidence discovery and analysis (Sun, 2010; van de Weil et al.,
2018). Due to the increasing delays in processing digital forensic
evidence in law enforcement agencies throughout the world, there
has been a focus in the digital forensic research and vendor com-
munities in empowering the non-expert case detective to perform
some preliminary analysis on the gathered evidence in a forensi-
cally sound manner (Lee et al., 2010). To this end, the Netherlands
Forensic Institute (NFI) have implemented a Digital Forensics as a
Service solution to expedite digital forensic processing (Casey et al.,
2017). This system facilitates the case officer in uploading evidence
to a private cloud-based system. Preliminary preprocessing takes
place and the officer is able to browse the evidence to unearth
potentially case-progressing information.

2.1. Digital forensic backlog

Storage capabilities are increasing exponentially while cyber-
crime related court cases are being dismissed. According to
Ratnayake et al. (2014), the likelihood of a prosecution can be
lessened due to the uncertainty in determining the age of a victim
portrayed in a digital image. Their work considered a parallel
challenge to age estimation which was to scan the sheer surface of
disk drives. They are aware of the backlog that is eminent due to the
lack of both relevant experts to analyze an offense and a laborious
digital forensic process. Per Scanlon (2016), these factors will
continuously influence the throughput of digital forensic labora-
tories; therefore, hinder digital forensic investigators in the future.

2.2. Machine learning for malware analysis

Machine learning offers the ability to reduce much of the
manual effort required with traditional approaches to malware
analysis, as well as increased accuracy in malware detection
and classification. In the context of malware analysis, a machine
learning model is trained on a dataset of existing labeled malware
examples, with the labeling either in terms ofmalicious or benign in
the case of binary classification, or in terms of the type or family of
malware for multi-class classification. In either case, the model
learns the differentiating features between the classes and so is
able to infer, for a new and previously unseen example, whether it
is malicious or benign, or whichmalware family it belongs to with a
certain degree of accuracy.

Of course there are many different types and variations of
machine learning algorithms and the training examples can be
represented in many different ways, which all influence the clas-
sification accuracy of the resulting model. Research in the field
generally involves the evaluation of different machine learning
algorithms and approaches, in conjunctionwith different and novel
types of features derived from the data. Many different approaches
have been proposed and a comprehensive review of the literature is
provided by both Ucci et al. (2017) and Gandotra et al. (2014).

In the next section, we focus specifically on approaches based on
deep learning (a type of machine learning) as these are most related
to our work. However, the types of features used and how they are
extracted in the general context of machine learning for malware
classification is also of key relevance. Machine learning reduces
much of the manual effort required with traditional approaches
to malware analysis by automatically learning to differentiate be-
tween malicious or benign, or different families of malware.
However, the analysis and extraction of the features from the data,
over which the machine learning model operates, still requires a
high level of domain expertise in conjunction with complex and
time consuming processes.

There are two families of features used in malware analysis:
thosewhich can be extracted from the staticmalware bytecode, and
thosewhich require the malware code to be executed (typically in a
sandbox environment). Static features include information such as
processor instructions, null terminated strings and other static re-
sources contained in the code, static system library imports, and
system API calls, etc. Features derived from executed code capture
how the malware interacts within the wider operating system and
network and can include dynamic system API calls and interactions
with other system resources such asmemory, storage and thewider
network, e.g., connecting to external resources over the Internet.

Although dynamic features extracted from executed code
are generally more time and computational resource consuming to
extract than features from the static code, both cases require
specialist tools and software environments e not to mention a high
level of domain expertise required to understand and extract them.
The core benefit of our approach, which we present in detail in the
section 3, is that our deep learning model requires only the raw,
static bytecode as input with no additional feature extraction or
feature engineering.

Before moving on to review general deep learning approaches
for malware classification in the next section, we first discuss two
machine learning approaches which attempt to make use of the
raw, static bytecode in a way which has some similarities to our
work. Nataraj et al (2011) interpret the raw bytecode as greyscale
image data where each byte represents a greyscale pixel, and they
artificially wrap the byte sequence into a two dimensional
array. They then treat the malware classification task as image
classification by applying various feature extraction and feature
engineering techniques from the image processing field, and use
machine learning over these. Inspired by this approach, Ahmadi
et al. (2016) use a similar representation of the data, and they
evaluate this technique using the same dataset with which we
evaluate our work, however they do not make use of deep
learning. We provide a comparison of classification accuracy to
our approach in the section 4.1. The application of image classifi-
cation techniques to the malware domain however still requires
the use of complex feature extraction procedures and domain
expertise.
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2.3. Deep learning for malware classification

Deep Learning ((LeCun et al., 2015), (Schmidhuber, 2015)) is a
machine learning approach that has experienced a lot of interest
over the last 5 years. Although artificial neural networks have been
studied for decades, recent advances in computing power and
increased data volumes have enabled the application of multi-layer
neural networks (deep neural networks) to large training datasets,
which has resulted in significant performance improvements
over traditional machine learning techniques. Deep learning is now
responsible for the state-of-the-art in many different machine
learning tasks on different types of data, e.g., image classification
(Hu et al., 2017) and natural language understanding and trans-
lation (Young et al., 2017). Malware classification has also attracted
the attention of deep learning researchers.

The majority of deep learning approaches applied to malware
classification involve training deep neural networks over the same
types of extracted features on which traditional machine learning
approaches are applied. These features require specialist knowl-
edge and tools to generate and usually involve either the parsing
or disassembly of the malware binary or running the malware in a
sandbox environment and logging and analyzing the process
execution and process memory, i.e., what the executed binary
actually does (Schaefer et al., 2017). We survey various applications
of deep learning to malware classification from the perspective of
which types of data and features are used.

2.3.1. Features from static code
Saxe andBerlin (2015) present a deep feed forward neural network

for binary malware classification that is trained on various features
extracted fromthestaticmalwarebinary: systemlibrary imports,ASCII
printable strings, metadata fields in the executable as well as se-
quences of bytes from the raw code. All these features require further
processing and are then fed into a four layer feed forward network.

Hardy et al. (2016) propose the DL4MD framework (Deep
Learning Framework for Intelligent Malware Detection), which is
trained over API calls extracted from malware binaries. An API
database is required to convert the call references from the format
they are extracted from the code in to a 32-bit global ID repre-
senting the API call. These features are then used as input to a deep
learning architecture based on stacked autoencoders.

Davis andWolff (2015) discuss an approach whereby they apply
a convolutional neural network for binary classification to dis-
assembled malware byte code. The raw disassembled code is
further processed to generate amore regularized set of features. For
example, they extract the individual x86 processor instructions,
which are variable length, and then apply padding or truncation to
create fixed length features. They also parse the disassembled code
to extract code imports, which they use to generate a further fixed
length feature vector for each example.

All the aforementioned approaches require differing degrees of
in-depth analysis of the disassembled code to extract domain specific
features, which are then fed into various deep learning architectures.
A key differentiator of our approach is that we do not require any
domain specific analysis or parsing of the raw malware executable
byte code. Our deep learning architecture requires no additional
information as to the meaning of the raw data, or how it should be
interpreted by the neural network. Although we do still need to
normalize the length of the input data, as this is a basic requirement
of the deep learning architecture we use, we do so at the entire raw
malware file level and we use a context independent method to
achieve this as described in the section 3.2.

Our methodology eliminates the need for complex feature en-
gineering requiring expert domain knowledge and tools such as
disassemblers, is not limited only to malware compiled for a specific
processor or operating system, and the deep neural network is able
to learn complex features directly from the data rather than being
constrained to those engineered by human experts.

2.3.2. Features extracted from executed code
As well as deep learning based malware classification based on

features from parsed and disassembled static malware code as
summarized above, many approaches also make use of features
derived from running the malware in a sandbox environment and
analyzing the behavior of the running process. Although the key
advantage of our methodology is that it only requires the raw
malware byte code as input, we also include the following sum-
mary of these alternative approaches.

As with more traditional machine learning based malware
classification, the use of system API calls logged from running
malware processes are a popular source of input features. Dahl et al.
trained neural networks of between one and three hidden layers on
features generated from system API calls as well as null terminated
strings extracted from the process memory (Dahl et al., 2013). A
random projection technique was used to reduce the dimension-
ality of the features to that which was manageable by the neural
network. Huang and Stokes (2016) propose an alternative deep
learning architecture which uses similar features, however their
model addresses multi-task learning in which the same deep
learning architecture provides both a binary malware/benign
classification as well as a classification of the malware type.

David and Netanyahu apply a deep belief network (DBN) to log
files generated directly bya sandbox environment. This captures API
calls as well as other events from the running malware as a
sequential representation (David and Netanyahu, 2015). Similarly,
Pascanu et al. (2015) apply a Recurrent Neural Network (RNN) to
event streams of API calls, in this case encoded as 114 higher level
events byamalware analysis engine. The use of an RNN captures the
relationships of these events across time, and is similar in function
to the LSTM component of our deep learning architecture. However
we use it to capture the positional relationship of patterns within
the static malware bytecode file rather than temporal relationships.

Kolosnjaji et al. (2016) propose a similar deep learning archi-
tecture to our methodology, which is also based on CNN and LSTM
layers. However, the input data are sequences of system API calls
extracted using the same sandbox environment as used by David
and Netanyahu's approach discussed above 30. The CNN layers
capture local sequences of API calls, whilst the LSTM layers model
the relationships between these local sequences across time. In our
approach, since we do not require the actual execution of the
malware code, the CNN layers instead capture local sequences and
patterns within the bytecode on a spatial level, and the LSTM layers
model their longer distance relationships throughout the file.

Rather than using simple API call sequences, Tobiyama et al.
(2016) use a more detailed representation of malware process
behavior. They record details of each operation such as process
name, ID, event name, path of current directory in which the
operation is executed, etc. They then apply a RNN to construct a
behavioral language model from this data, whose output is con-
verted into feature images. A CNN is then trained over these feature
images to produce binary malware/benign classifications. As with
the previously outlined approaches that use features extracted
from executing the malware code, the process required to collect
the data is complex and time consuming. In this particular case,
eachmalware or non-malware examplewas executed and analyzed
for 100 min (5 min of logging, followed by 5 min interval and this
was repeated 10 times). A complex sandbox environment setup
was also needed, which is likely to have been another factor which
resulted in a limited evaluation dataset being generated - only 81
malware and 69 benign examples.



Table 1
Number of examples for each malware class in the dataset.

Malware Class Number of Examples

Ramnit 1541
Lollipop 2478
Kelihos_ver3 2942
Vundo 475
Simda 42
Tracur 751
Kelihos_ver1 398
Obfuscator.ACY 1228
Gatak 1013

Q. Le et al. / Digital Investigation 26 (2018) S118eS126 S121
In real world scenarios, malware defense systems that utilize
machine learning based malware classification must be able to
adapt to new variants and respond to new types of malware. If the
approach requires complex, time and resource consuming pro-
cesses to extract features required for the machine learning model,
this will adversely impact the usefulness of the solution. This is a
key motivation for our approach and so we focus on using only the
static, raw malware bytecode with minimal data preprocessing.

Before we describe our methodology in detail in the next
section, we will conclude our literature review with two ap-
proaches that aremost similar to ourmethodology. Raff et al. (2017)
describe a very similar motivation for their deep learning approach
for malware classification - the need to remove the requirement for
complex, manual feature engineering. Similar to our work, they
focus on the raw malware bytecode and the application of deep
learning techniques directly to this data. However, when faced with
the challenge of how to work with such long sequences of bytes,
they took a different approach which involved designing an
atypical deep learning architecture that could handle such long
input sequences. Our solution, on the other hand, is to simply use a
generic data scaling approach (down sampling) as a pre-processing
step, after which amore standard deep learning architecture can be
applied. Although this approach, which by its nature reduces the
detail in the data, might intuitively be thought of as resulting in
drastically reduced classification accuracy, we show through eval-
uation that sufficient signal remains in the data for the deep
learning network to exploit and achieve very high accuracy levels.

Finally, motivated by Ahmadi's work (Ahmadi et al., 2016), and
with similarities to (Nataraj et al., 2011),Gibert (Gibert Llaurad�o, 2016)
applied a CNN to malware bytecode represented as two dimensional
greyscale images. A similardown sampling approach aswe employed
wasapplied to normalize the size of each sample to 32x32pixels. The
key differences with our approach is that we use the raw malware
bytecode in its original one dimensional representation (we don't
artificially wrap the byte sequence to create 2D representation), and
we preserve more detail by down sampling the data to 10,000 bytes
rather than1024 (32x32). In termsof deep learning architectures,we
utilize LSTM layers on top of CNN layers in order to capture relation-
ships among local patterns across the entire malware sample. We
used the same evaluationdataset and experimental setup as thework
byGilbert sowe coulddirectly compare approaches, andweobserved
a significant increase in classification accuracy with our approach
which we present in more detail in Section 4.1.

3. Methodology

In this section, we describe our deep learning based approach
for malware classification in detail, including the dataset we used
for our experiments, data preprocessing, deep learning architec-
tures, and experimental design.

3.1. Dataset

For our experiments, we used the malware data from the
Microsoft Malware Classification Challenge (BIG, 2015) on Kaggle
(Ronen et al., 2018).1 Although the Kaggle challenge itself finished in
2015, the labeled training dataset of 10;868 samples is still available
and represents a large collectionof examples classified intomalware
classes, as shown in Table 1. As well as being able to use this data to
both train and evaluate our own deep learning approaches, the
Kaggle challenge still allows the submission of predictions for a
separate unlabeled test set of 10;873 samples for evaluation.
1 https://www.kaggle.com/c/malware-classification.
Each labeled malware example consists of a raw hexadecimal
representation of the file's binary content, without the PE header
(to ensure sterility). In addition, a metadata representation is
also provided, which includes details of function calls, embedded
strings, etc., which were extracted using a disassembler tool. As the
focus of our work is the application of deep learning techniques to
classify malware based on the raw binary file content, we only
consider the raw hexadecimal file representations, and convert it to
its binary representation.
3.2. Data pre-processing

One of the benefits of deep learning over othermachine learning
techniques is it's ability to be applied over rawdatawithout theneed
for manual and domain specific feature engineering. This is a key
motivation for our work - the ability to efficiently classify malware
without requiring specialist expertise and time consuming pro-
cesses to identify and extract malware signatures. To parallelize the
computation in training and testing themodels efficiently, our deep
learning approach requires that each file be a standard size, and in
the case of malware the file size is highly variable, as shown in Fig.1.

In addition to having the same size, from a computational
perspective, our deep learning methods require that this size is
constrained so as to keep the model training process practical using
standard hardware. There are a number of options we could have
taken to standardize the file size including padding and truncation,
however we design our deep learning models to identify and detect
common patterns and structure within the malware file data;
hence we want to preserve the original structure as much as
Fig. 1. Distribution of malware file size (in kilobytes) for the raw binary files in the
training dataset.

https://www.kaggle.com/c/malware-classification


Fig. 2. Example malware binaries represented as greyscale images to aid visualization. Each byte is interpreted as a greyscale pixel, and the contiguous byte sequence is wrapped to
produce a two dimensional image.
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possible. To this end, we used a generic image scaling algorithm,
where the file byte code is interpreted as a one dimensional ‘image’
and is scaled to a fixed target size. This is a type of lossy data
compression. However, by using an image scaling algorithm, we
aim to limit the distortion of spatial patterns present in the data.
Compared to approaches of converting amalware binary file to a 2D
image before doing classification, our approach is simpler since we
do not have to make the decision about the height and width of the
image. Also converting a binary file to a byte stream preserves the
order of the binary code in the original file, and this sequential
representation of the raw binary files makes it natural for us to
apply a recurrent neural network architecture to it. In our experi-
ments that follow, we scale each raw malware file to a size of
10,000 bytes using the OpenCV computer vision library (Bradski,
2000) - i.e. after the scaling one malware sample corresponds to
one sequence of 10;000 1-byte values.

Fig. 2 shows a number of example malware files which have
been scaled using this approach, and then represented as two
dimensional greyscale images (one byte per pixel), where the im-
ages are wrapped into two dimensions purely for visualization
purposes. The spatial patterns in the data both on a local scale and
on a file level are visible and it is these raw features and patterns
that our deep learning architecture is designed to exploit.

3.3. Deep learning architectures

We utilize different deep learning architectures for our experi-
ments. We first apply multiple convolutional neural layers (CNNs)
(LeCun et al., 1995) on the one dimensional sequential
Fig. 3. Convolutional Neural Network (CNN) architecture.
representation of the file. Since convolutional neural layers are shift
invariant, this helps the models capture one dimensional spatial
patterns of a malware class wherever they appear in the file.

On top of the convolutional layers, we apply two different
approaches. In our first model, we connect the outputs of the
convolutional layers to a dense layer, then to the output layer with a
softmax activation to classify each input into one of the nine classes
of malware, as shown in Fig. 3. This CNN-based approach classifies
the one dimensional representation of the binary file using local
patterns of each malware class, and is the dominant and very
successful neural network architecture in image classification
(Krizhevsky et al., 2012).

For the second and third models, we apply recurrent neural
network layers, the Long Short Term Memory module (LSTM)
(Hochreiter and Schmidhuber, 1997), on top of the convolutional
layers, before feeding the output of the recurrent layer to the output
layer to classify the input into one of the nine malware classes. Our
rationale behind this approach is that since there are dependencies
between different pieces of code in a binary file, a recurrent layer on
top of the CNN layers will help to summarize the content of the
whole file into one feature vector before feeding it to the output
layer. In model two, CNN - UniLSTM, we apply one forward LSTM
layer on top of the convolutional layer, where the connecting di-
rection of the cells in the LSTM is from the beginning to the end of
the file, as shown in Fig. 4. But since the dependency between code
in a binary file does not go only in one direction, we design our
third model, CNN-BiLSTM, where we connect the outputs of the
convolutional layers to one forward LSTM layer and one backward
Fig. 4. Convolutional Neural Network plus Long Short Term Memory (CNN þ LSTM)
architecture.



Fig. 5. Convolutional Neural Network plus bi-directional Long Short Term Memory
(CNN þ biLSTM) architecture.
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LSTM layer. The outputs of the two LSTM layers are then concate-
nated and fed to the output layer, as can be seen in Fig. 5.
3.4. Experiment protocol

Since we only have the labels of the malware files on the
training set of the Kaggle challenge, except for the final step of
submitting the predictions on the test set to the Kaggle website
each of the experiment results we report here are measured on this
set of samples. For simplicity, we will refer to the training set of the
Kaggle challenge as the main dataset.

After the preprocessing step we have 10,860 labeled samples in
our dataset. Since this is a not a significantly large number, to
achieve a more robust accuracy measure we use five fold cross-
validation. The dataset is shuffled and divided into five equal
parts, each with roughly the same class distribution as the main
dataset. For a chosen deep learning configuration, we set each of
the five parts as the left out part, train one model on the other 4
parts and record the predictions for samples in it. We then
assemble the predictions for all five parts and use them to compute
the performance of the chosen deep learning configuration.

The distribution of the classes in the dataset is highly imbalanced,
with thenumber of samples per class ranging from42 samples for the
classSimdato2942samples for theclassKelihos_v3. Besidesusing the
micro average classification accuracy to report the performance of a
model, we also assess the performance of a model by its macro-
averaged F1-score for each of the classes. The F1-score reports the
performance of the model on any one class as the harmonic mean of
the precision and recall on that class, and themacro average F1-score
will treat the performance on each class of equal importance.

We take one additional step to address the class imbalance
problem. In one training step of a deep learning model, a batch of
chosen size, e.g. 64 samples, will be drawn from the training data,
then the forward computation and the backward propagation is
used tomodify theweights of themodel toward better performance.
Table 2
The number of parameters and the training time for the specified deep learning
Configurations.

Configurations No Params Train time (m)

CNN - Def Sampl 1,842,069 5.6
CNN - Reb Sampl 1,842,069 10.1
CNN UniLSTM - Def Sampl 155,669 32.1
CNN UniLSTM - Reb Sampl 155,669 55.1
CNN BiLSTM - Def Sampl 268,949 62.1
CNN BiLSTM - Reb Sampl 268,949 106.2
The default sampling mode where all samples are drawn randomly
from the training data will take samples mostly from the populous
class, while likely missing samples from a rare class, such as Simda.
To address this, in conjunction with using the default sampling
procedure to generate data batches, we test a class rebalancing
sampling approach, where for each batch we draw approximately
the same number of samples from each class randomly. One batch of
samples, of size batch size� sequence length is fed to the deep
learning model without using the data normalization step.

In total, we have six deep learning configurations: each configu-
ration is a combination of one of three deep learning architectures
(CNN, CNN-UniLSTM, CNN-BiLSTM), and one of the two batch sam-
ple generating procedures in training the model (the default sam-
plingmode, and the class rebalance samplingmode). All models have
three convolutional layers, while the hyperparameters of a deep
learning configuration, i.e., the number of nodes in each layer, is
chosen through its performance in the cross-validation procedure.

To avoid overfitting, we use L2 regularization to constrain the
weights of the convolutional layers, and dropout in the dense and
LSTM layers. We choose the batch size to be 64. Other hyper-
parameters, e.g., the number of nodes in each layer, are chosen
through the 5-fold cross-validation procedure.

Once the best deep learning configuration is chosen, we retrain
the model on the whole training set, predict the labels for the
malware files in the unlabeled test set, and submit them to
the Kaggle website to get back the test set average log-loss - a low
average log-loss correlates to a high classification accuracy.

4. Results and discussion

4.1. Results

Our final deep learning models’ hyper-parameters are as follows.
All models have three layers of convolutional layers with the recti-
fied linear unit (ReLU) activation function; the number of filters at
the three layers are 30, 50, and 90. For the CNNmodels, the outputs
of the convolutional layers are connected to a dense layer of 256
units, then fed to the output layer. For the CNNwithUniLSTMor CNN
with BiLSTM models, we connect the outputs of the convolutional
layers to one (UniLSTM) or two LSTM layers (BiLSTM), each LSTM
layer has 128 hidden units; the outputs of the LSTM layers are then
connected to the output layer. As described earlier, to complete a
deep learning configuration each deep learning architecture (CNN,
CNN-UniLSTM, CNN-BiLSTM)will be pairedwith one of the two data
batch generators: the default sampling batch generator (DSBG), and
the class rebalance batch generator (CRBG). The models are imple-
mented using the Keras library with the Tensorflow backend.2

In the 5-fold cross-validation procedure, we train eachmodel for
100 epochs on our Nvidia 1080 Ti GPU; the weights of the model
are modified by the Adam optimization method (Kingma and Ba,
2014) to minimize the average log-loss criteria (i.e. the average
cross-entropy criteria).

Table 2 reports the number of parameters and the training time for
the six deep learning configurations. We report the average accuracy
and the F1-score of different deep learning configurations in Table 3.

From the results, the CNN-BiLSTM with the class rebalance
sampling batch generator configuration has the best F1-score and
the best accuracy on validation data. As a result, we train our final
model with this configuration on the entire training dataset, where
90% of the dataset is used to tune the weights of the model and the
remaining 10% of the dataset is used as the validation data to
choose the best model among the 100 epochs.
2 https://bitbucket.org/ceadarireland/deeplearningattheshallowend.

https://bitbucket.org/ceadarireland/deeplearningattheshallowend


Table 3
Average accuracy and F1-score of different deep learning configurations using the
5-fold cross-validation procedure.

Deep Learning Conf Acc (%) F1 (%)

CNN - Def Sampl 95.1 92.14
CNN - Reb Sampl 95.8 92.14
CNN UniLSTM - Def Sampl 97.64 94.15
CNN UniLSTM - Reb Sampl 98.12 95.92
CNN BiLSTM - Def Sampl 97.91 95.52
CNN BiLSTM - Reb Sampl 98.20 96.05

Table 4
Time to pre-process and predict binary files in the test set with the final model.

Stages Total (s) Average (s)

Convert bin file to 1D rep 191.22 0.0176
Prediction 23.1 0.0021
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Fig. 6 visualizes the loss and the accuracy on the training and
validation data for the final model.

The final CNN-BiLSTM model achieves an average log-loss of
0.0762 on the validation data and a validation accuracy of 98:80%.
Upon submitting the predictions of this model for the test malware
files to Kaggle, we receive two average log-loss scores: a public
score of 0.0655 calculated from 30% of the test dataset and a private
score of 0.0774 calculated from70% of the test dataset. These results
align with the log-loss we obtained on the validation data, which
means our final model generalizes well on new data.

Table 4 reports the times our final model takes to pre-process
and predict the classes for the 10;873 test files. To simulate a
real-life deployment situation, we load our final model onto a CPU
(Intel Core i7 6850K) to do the predictions.

4.2. Discussion

Our experiments show that the one dimensional representation
of the raw binary file is a good representation for the malware
Fig. 6. Loss and accuracy on
classification problem. It is very similar to the image representation
of the malware raw binary file; however it is simpler, it preserves
the sequential order of code in the raw binary file, and one does not
have to make the decision about the ratio between the width and
the height in the image representation.

Our use of the class rebalance sampling procedure helps to
improve both the accuracy and the F1 score of all the CNN LSTM
models (both the UniLSTM and BiLSTM models). We believe this
improvement is due to the fact that the inclusion of samples of all
classes in each batch gives the back propagation a better signal to
tune the parameters of the models.

The best performance was achieved when training the CNN-
BiLSTM with the class rebalance sampling procedure. Due to the
sequential dependency when computing the cells in the LSTM
layer, the CNN BiLSTM can not utilize the GPU as efficiently as the
CNN model. With the same batch sampling procedure, training a
CNN model is 10 times faster than training a CNN - BiLSTM model.
On the other hand, the CNN-BiLSTM model uses 268,000 parame-
ters while the CNN model uses 1.84 million parameters. When we
use both models to predict the classes of raw binary files on the
CPU, the CNN-BiLSTMmodel is only 1.5 times slower than the CNN
model. The CNN - UniLSTM model trained with the class rebalance
training the final model.
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sampling procedure is a nice compromise; training it takes less
time than training the CNN-BiLSTMmodel but it still achieves good
performance.

The results also show that adding another dependency direction
in the binary code when going from using only the forward
LSTM layer (CNN-UniLSTM model) to using both the forward and
backward layer (CNN-BiLSTM model) helps improve the perfor-
mance of the deep learning model. However the bigger jump in
performance is achieved when we go from the CNN architecture to
the CNN - LSTM architecture.

Ahmadi et al., 2016 also evaluate a machine learning-based
approach to malware classification using the Kaggle dataset. Their
feature engineering approach used a combination of different
features extracted from the raw binary files and the disassembled
files. One of them is the features extracted on the image repre-
sentation of the raw binary files. Using the XGBoost classifier on
these extracted features of the image representation they obtain
the performance of 95.5% accuracy on the 5-fold cross-validation
procedure, as shown in Table 4 of (Ahmadi et al., 2016). While
our one dimensional representation of the raw binary file is similar
to the image representation of raw binary file, our deep learning
does not use feature extraction on top of it, and our best deep
learning model obtains the accuracy of 98.2%, which is better than
the previous feature engineering approach.

Another advantage of the deep learning approach is the time it
takes to classify a new binary file. While training the models re-
quires a GPU, the final model only needs to use a CPU to predict the
malware class of a new binary file. Using our regular workstation
with a 6 core i7-6850K Intel processor, training and testing files our
final model takes on average 0:02 second to classify a binary file.
This includes the time taken to convert a binary file to its one
dimensional representation and the prediction time. As a com-
parison, two image feature extraction techniques in (Ahmadi et al.,
2016) take on average of between 0:75 and 1.5 s for each binary file,
as can be seen in Figure 8 in Ahmadi et al., 2016.

Gibert Llaurad�o (Gibert Llaurad�o, 2016) (Chapter 5) uses an
approach similar to ours when using convolutional neural net-
works on the image representation of raw binary file. The CNN
model they describe has 34.5 millions parameters; it has a public
score of 0.1176 and a private score of 0.1348. Our CNN - BiLSTM
model achieved a better performance with a public score of 0.0655
and a private score of 0.0774 while using 268,000 parameters.

5. Concluding remarks

Ourdeep learning approach achieves a highperformance of 98:2%
accuracy in the cross-validation procedure, and the final model has
98:8% accuracy based on the validation data. The appeal of the out-
lined deep learning approach for malware classification is two fold.
Firstly, it does not require feature engineering,which is a big obstacle
for researchers who are not familiar with the field. Secondly, the
model takes a short time to classify the malware class of a binary file
(0.02 s in our experiments), hence it is practical to use it in reality.

The results also show that the class rebalance batch sampling
procedure could be used to address the class imbalance problem in
the dataset. In practice, new malware files belonging the malware
families recognized by the model will be found over time. For the
deep learning approach, one could start from an available model
and update it with new training data to improve its accuracy, thus
the cost of retraining the model is small.

Our one dimensional representation of the raw binary has its
limitations: it does not consider the semantics of the binary code in
the raw binary file. However, as our experiments show, there are
spatial patterns of each malware class in the raw binary files, and
deep learning models could use them to predict the class of a
malware file effectively. Gibert Llaurad�o (Gibert Llaurad�o, 2016)
shows that one could apply deep learning on the disassembled
files successfully, it shows that there are merits in considering the
semantic meaning of each byte e even if the reverse engineering
step is not conducted through disassembling the raw binary files.

Future work

For future work, we would like to test our deep learning
approach on bigger datasets with more malware classes. One
approach is to preserve the semantic meaning of each byte in the
raw binary file in the preprocessing step, though this approach
means we need a suitable way to compress a large binary
file (approximately 60 Mbytes) to a small size without losing the
semantic meaning of the bytes in the final representation. Another
useful feature would be to modify our deep learning model so it
could detect if the new binary file belongs to one of the available
classes or belongs to a new malware class. Finally, we could apply
more complex deep learning architectures to attain better perfor-
mance, for example we could add residual modules He et al., 2016
42 to the model to alleviate the vanishing gradient problem.
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