
Peer-to-Peer Botnet Investigation: A Review

Mark Scanlon and Tahar Kechadi

School of Computer Science and Informatics,

University College Dublin,

Belfield, Dublin 4, Ireland.

{mark.scanlon, tahar.kechadi}@ucd.ie

Abstract. Botnets have become the tool of choice to conduct a number of

online attacks, e.g., distributed denial of service (DDoS), malware distribution,

email spamming, phishing, advertisement click fraud, brute-force password at-

tacks, etc. Criminals involved in conducting their craft online all share one

common goal; not to get caught. Botnet design, as a result, has moved away

from the traditional, more traceable and easily blocked client/server paradigm

towards a decentralized Peer-to-Peer (P2P) based communication system. P2P

Internet communication technologies lend themselves well to be used in the

world of botnet propagation and control due to the level of anonymity they

award to the botmaster. For the cybercrime investigator, identifying the perpe-

trator of these P2P controlled crimes has become significantly more difficult.

This paper outlines the state-of-the-art in P2P botnet investigation.

1 Introduction

In the past, cyberattackers required high-end computer equipment coupled with high

bandwidth Internet connections to accomplish their goals. In recent years, high band-

width home and workplace broadband Internet connections have become common-

place. This has resulted in these computers being targeted by criminals to attempting

to create large, global distributed systems, i.e., botnets, to perform their bidding. The

software robots, or bots, which form these distributed systems are controlled remotely

by the criminal attacker, or botmaster.

Investigation of botnets branches into three main areas [1]:

1. Botnet Anatomy - Investigating the anatomy of a particular botnet includes both

analysis of the reverse engineering of the binary content and analysis of the net-

work communication behaviours.

2. Wide-area Measurement - This concentrates on attempting to enumerate the popu-

lation of the botnet, the bandwidth and computational overhead and their usage.

Gathering the population of a botnet is a non-trivial task as the number of nodes

ever connecting to a Command and Control (C&C) server may only count for a

small proportion of the infected nodes [2].

3. Botnet Modelling and Prediction - This includes the theoretical modelling of future

botnet designs, along with attempting to design best practice in countermeasures

against them.

1.1 Traditional Client/Server Botnets

Traditional botnet design was centred on a client/server paradigm, as can be seen in

Figure 1 below. Using this model, the botmaster issues requests to the "Command and

Control" (C&C) server. The client-side bot software, which runs on the infected

nodes, is pre-programmed to frequently "check-in" with the C&C server in order to

get its latest commands. The C&C server eliminates the need for the botmaster's com-

puter to remain online in order to distribute the latest orders to the entire botnet, while

awarding the botmaster an added level of anonymity. The C&C server is generally

either IRC or HTTP based serving commands to the nodes.

Fig. 1. Typical Client/Server Botnet Command and Control Topology.

The main issue with the client/server model is that it leaves the botnet vulnerable to

a single point of failure. To counteract this, multiple C&C servers may be used op-

tionally in conjunction with a dynamic DNS service, such as DynDNS [3] or No IP

[4]. The dynamic hostnames are hard-coded into the bot software, quickly and easily

enabling the botmaster to swap in a new command and control server by updating the

IP addresses associated with the dynamic DNS provider, without any disruption of the

botnet's operation.

1.2 Peer-to-Peer Botnets

Fig. 2. Typical Peer-to-Peer Botnet Command and Control Topology

In the P2P botnet topology, each peer, in effect, acts as both the client and the server.

When a peer receives a command, that command is executed and the command itself

is then forwarded on to any other peers it is aware of, as can be seen in Figure 2. Us-

ing this model, the botmaster can briefly connect to the network, issue a command to

a single infected node, and immediately disconnect in the knowledge that the com-

mand will propagate across the network to each compromised node. As new nodes

come online, they bootstrap onto a distributed hash table (DHT). This newly con-

nected node will then receive the latest command from another node in the DHT.

Each node in the P2P botnet maintains the DHT, similar to the methods employed in

the maintenance of active nodes in the BitTorrent DHT [5]. By design, each bot has a

limited view of the entire network imposed by a maximum number of addressed

stored or because of a limitation of the network due to firewalls or NAT [6].

The intra-bot communication is generally conducted on a private, closed sourced P2P

networks though some use existing public P2P networks. Commonly, P2P botnets

also take advantage of the popularity of P2P file-sharing services to help to spread

copies of the bot to new machines [7]. By posing as a desirable file, e.g., “Microsoft

Office.exe”, on these file-sharing networks, users will, in effect, infect their own ma-

chine with the malware while attempting to download something entirely different.

2 Infection

The infection or “recruitment” phase of the botnet malware consists of it attempt-

ing to compromise a host through any means possible, e.g., taking advantage of an

exploit, social engineering, email attachments or the mimicking of desirable content

on download sites or on P2P file-sharing networks [6]. A traditional bot, once in-

stalled on a new machine, will immediately attempt to phone home through an IRC

network or contacting a HTTP C&C server. P2P bots ship with a bootstrapping

method to connect to the DHT. Once connected, the newly compromised machine

will ask one of its peers for the latest command. Some of the P2P bots require that a

specific port is open for the peers to be able to communicate with each other [7].

Through the deployment of a firewall, many of the unnecessarily open ports on any

given machine will be blocked. Any new application that attempts to access the net-

work for any reason can also be flagged to the user, e.g., immediately after a recent

infection of the botnet malware.

3 Measurement

A straightforward method for measuring the size of a botnet is to run a bot on a delib-

erately infected machine and monitor the resultant traffic. The number of IP addresses

the infected node is in communication with can be easily counted having eliminated

all non-botnet related network traffic. While it would be unsafe to assume that a sin-

gle node will ultimately communicate with every other node over time, increasing the

number of infected machines (physically or virtually) and amalgamating the results

should lead to a more accurate representation.

Byung et al. proposed in 2009 a methodology for improving botnet size estimates

through the implementation of a botnet crawler, called Passive P2P Monitor (PPM)

[8]. PPM acts as though it were the same as any other node on the network by imple-

menting the "Overnet Protocol", as explained below. This method involves mimicking

the functionality of a regular bot with regards to maintaining the DHT. For each peer

the crawler connects to, it can ask for a list of all known peers. In this manner, a list of

all known peers on the network can be compiled.

4 P2P Botnet Investigation

As quickly as botnet technology is evolving, so too is the methodology for trying

to investigate the latest botnet advancements. The objective of any botnet investiga-

tion is to attempt to decipher the methods of communication used in order to eaves-

drop on the botnet chatter in an attempt to record the manner with which the botnet

propagates itself, what commands the botnet is executing, what systems are at risk

and how many machines are infected. There are three main approaches to P2P botnet

investigation [6]:

Fig. 3. Typical Investigation Network Topology

1. Deliberately infect a host and participate in the botnet. This is the most realistic

scenario insofar as a real machine is infected and, as a result, no flags should be

raised to either the bot client or any other peers that an investigation is taking

place. The network traffic of the machine can be monitored and analysed.

2. Deliberately infect a virtual host (or multiples thereof). This allows multiple bot

clients to run on the same physical machine allowing much more network traffic to

be gathered in a shorter period of time. However, many modern bots have the abil-

ity to detect if their host is a virtual machine and may adjust their behaviour ac-

cordingly.

3. Create a crawler and mimic the protocol used by the botnet. In order for a crawler

to be built, the bot itself will need to be completely reversed engineered. The

crawler can then act as though it were a regular bot on the network to every other

peer. This method awards the investigator much control over the network, from

enumeration to forwarding bogus commands.

Irrespective of the investigation method used, the topology of the investigation will

appear similar to that outlined in Fig. 3 above. A client machine in a controlled foren-

sically sound environment will attempt to partake in the botnet. In order not to raise

any flags to any built in counter-forensic measures to either the botnet client or any

other peers on the network, this client machine must appear as any other regular in-

fected machine. All network communication from that client machine can then be

monitored, recorded and analysed.

4.1 Obstacles in P2P Botnet Investigation

 Many of the obstacles facing an investigation on P2P botnets are shared by the in-

vestigation of any P2P network, documented or undocumented [9]:

1. Dynamic Host Configuration Protocol (DHCP) – Due to a typical lease from an

Internet service provider lasting in the order of 2-7 days, dynamic reallocation of

the same IP address may result in two or more infected machines participating in

the network appearing as a single peer.

2. Proxy servers - Similar to the issue caused by DHCP, any bots that access the

Internet through a transparent or anonymous proxy server will also appear as a sin-

gle bot.

3. Network Address Translation - Numerous machines behind a shared router may

appear to the outside world as a single machine as they share a single IP address.

4. Encrypted Communication – Should the bot employ encrypted communication, the

only method available for investigation is to attempt to reverse engineer the bot.

The decryption key for any incoming commands must be stored within the bot’s

client.

5. Difficulty in Take Down - Fighting back against botnets is often a matter of dis-

covering their weak spot. Traditionally this has meant attempting to take down

their centralized C&C server [7]. However, with the popularity of employing a

fully decentralized network design, the ability to take down a botnet has been made

considerably more difficult. Should the bot be reverse engineered, it’s possible that

the botnet could be “imploded”, i.e., through the issuing of an uninstall command

to each infected node.

5 Case Studies

5.1 Nugache Botnet

Nugache uses a list of 22 hardcoded IP addresses which each newly infected host

attempted to connect to [6]. These 22 hosts maintain a list of active nodes, which they

share with each new node. The list of active nodes that any given peer maintains al-

ways contains the initial 22 hosts, along with any newly shared active IP addresses.

The weakness of this design is that once these 22 hardcoded nodes are taken down, no

newly connecting peer will be able to gather its initial list of other peers to communi-

cate with. The Nugache botnet communicates across its own bespoke network proto-

col. The communication between each node is not encrypted, but there is a degree of

obfuscation employed [7].

5.2 Storm Worm

The "Storm" botnet, first discovered in January 2007 [10], is the first botnet discov-

ered that utilised a P2P protocol. It spread through a mixture of social engineering and

exploiting vulnerabilities in Windows XP and Windows 2000. The social engineering

aspect of the worm was realised through the sending of topical newsworthy email

with attachments or links to videos and pictures, which were in fact executables to

infect the user’s machine. When it infected any given machine, it would disable the

Windows firewall and open a number of TCP and UDP ports. Communication in the

Storm botnet relies on the "Overnet Protocol". Once the malware was installed and

the host machine was configured, it would then bootstrap onto the Overnet network

and start listening for commands. The worm was also engineered to aggressively at-

tack anyone who attempted to reverse engineer it [11].

The Overnet Protocol utilises a Distributed Hash Table (DHT) storing the IP ad-

dresses and unique IDs of each active peer in the network [8]. It is based on the

Kademlia algorithm, similarly to BitTorrent [11]. Kademlia assigns a 160-bit hash ID

to each participating peer on the network. Each peer maintains a local routing table

consisting of the binding values for other peers that are "close" to their own ID.

5.3 Waledec Botnet

The Waledec botnet has striking similarities to the Storm botnet, while simultane-

ously exhibiting unique refinements that make it more robust and in part more vulner-

able to attack. Waledec follows a hierarchical architecture design. The lowest level

were the spammer nodes, which, as their name implies, were responsible for sending

spam emails. These spammer nodes communicated exclusively with repeater nodes or

super-nodes. These super-nodes, in turn, were in control of the communication with

the spammer nodes and would receive their commands from the next level up, known

as the sub-controllers [12]. The highest level in the hierarchy, the C&C server, only

communicated directly with these sub-controllers.

Similarly to the Storm botnet, the Waledec binary contains a list of hardcoded

nodes to use to bootstrap onto the network. In the event of all of these hardcoded

nodes being offline, a dynamic URL is also included in the binary to fall back on

HTTP to receive commands. Due to this HTTP fall-back, this category of botnet is

sometimes referred to as a “HTTP2P” botnet [13]. Communication between nodes

was encrypted, initially using a constant key for all nodes, which later evolved into a

frequently changing key, which would be created at the C&C server and passed down

the hierarchy [12].

6 Conclusion

The P2P botnet topology is a desirable one to choose for botmasters and it affords

them an additional level of anonymity when conducting their crimes. The ideal design

for a P2P botnet is one that is completely decentralised, utilises unique encryption

methods and operates on a bespoke network protocol for communication. Investiga-

tion of such a botnet may prove particularly difficult. However, a combination of

research, network monitoring, deep packet inspection and network crawling should

result in successful, albeit more labour intensive, investigations. The requirement for

any newly infected node to have a starting point to bootstrap onto the network as well

as seek out other active nodes on the network will always leave an approach for detec-

tion and monitoring.

7 Acknowledgement

This project is co-funded by the Irish Research Council for Science, Engineering and

Technology and Intel Ireland Ltd. through the Enterprise Partnership Scheme.

Bibliography

1. Zhu, Z., Lu, B., Liao, P., Liu, C., Cui, X.: A hierarchical hybrid structure for

botnet control and command. In : Proceedings of 32nd Annual IEEE International

Conference on Computer Software and Applications, pp.967-972 (2008)

2. Rajab, M., Zarfoss, J., Monrose, F., Terzis, A.: My botnet is bigger than yours

(maybe, better than yours): why size estimates remain challenging. In : Proceed-

ings of the First USENIX Workshop on Hot Topics in Understanding Botnets

(HotBots'07), pp.5-5 (2007)

3. DynDNS. Available at: http://dyn.com/dns

4. No IP. Available at: http://www.no-ip.com

5. Jimenez, R., Osmani, F., Knutsson, B.: Towards automated detection of peer-

to-peer botnets: on the limits of local approaches. In : Proceedings of the 2nd

USENIX conference on large-scale exploits and emergent threats: botnets, spy-

ware, worms, and more, p.3 (2009)

6. Dittrich, D., Dietrich, S.: Discovery techniques for P2P botnets. CS Technical

Report 2008--4, Stevens Institute of Technology (2008)

7. Schoof, R., Koning, R.: Detecting peer-to-peer botnets. Unpublished Paper

http://staff.science.uva.nl/~delaat/sne-2006-2007/p17/report.pdf, University of

Amsterdam (2007)

8. Byung, B., Kang, H., Chan-Tin, E., Lee, C., Tyra, J., Kang, J., Nunnery, C.,

Walder, Z., Sinclair, G., Hopper, N., Dagon, D., Kim, Y.: Towards complete node

enumeration in a peer-to-peer botnet. In : Proceedings of the 4th International

Symposium on Information, Computer, and Communications Security (ASIACCS

'09), pp.23-34 (2009)

9. Scanlon, M., Hannaway, A., Kechadi, M.-T.: A Week in the Life of the Most

Popular BitTorrent Swarms. In : Proceedings of the 5th Annual Symposium on

Information Assurance (ASIA '10), pp.32-26 (2010)

10. Grizzard, J., Sharma, V., Nunnery, C., Byung, B., Dagon, D.: Peer-to-Peer

Botnets: Overview and Case Study. In : Proceedigns of First USENIX Workshop

on Hot Topics in Understanding Botnets (HotBots'07)

11. Mukamurenzi, N. M.: Storm Worm: A P2P Botnet. Master of Science Thesis in

Communication Technology, Department of Telematics, Norwegian University of

Science and Technology (2008)

12. Sinclair, G., Nunnery, C., Kang, B. B.-H.: The waledac protocol: The how and

why. In : Proceedings of 4th International Conference on Malicious and Un-

wanted Software (MALWARE), pp.69-77 (2009)

13. Jang, D., Kim, M., Jung, H., Noh, B.: Analysis of HTTP2P botnet: case study

waledac. In : Proceedings of IEEE 9th Malaysia International Conference on

Communications, pp.409-412 (2009)

http://dyn.com/dns
http://www.no-ip.com/

