
SoK: Exploring the State of the Art and the Future Potential of
Artificial Intelligence in Digital Forensic Investigation

Xiaoyu Du
University College Dublin

Ireland
xiaoyu.du@ucdconnect.ie

Chris Hargreaves
University of Oxford
United Kingdom

christopher.hargreaves@cs.ox.ac.uk

John Sheppard
Waterford Institute of Technology

Ireland
jsheppard@wit.ie

Felix Anda
University College Dublin

Ireland
felix.anda@ucdconnect.ie

Asanka Sayakkara
University College Dublin

Ireland
asanka.sayakkara@ucdconnect.ie

Nhien-An Le-Khac
University College Dublin

Ireland
an.lekhac@ucd.ie

Mark Scanlon
University College Dublin

Ireland
mark.scanlon@ucd.ie

ABSTRACT
Multi-year digital forensic backlogs have become commonplace in
law enforcement agencies throughout the globe. Digital forensic
investigators are overloaded with the volume of cases requiring
their expertise compounded by the volume of data to be processed.
Artificial intelligence is often seen as the solution to many big data
problems. This paper summarises existing artificial intelligence
based tools and approaches in digital forensics. Automated evidence
processing leveraging artificial intelligence based techniques shows
great promise in expediting the digital forensic analysis process
while increasing case processing capacities. For each application of
artificial intelligence highlighted, a number of current challenges
and future potential impact is discussed.
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1 INTRODUCTION
Digital Forensic Science involves the recovery of evidence from
digital devices, and is sometimes defined in terms of process models
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that capture the stages of the investigation [26]. For the purposes
of this paper, the process is divided up into stages that assist in the
discussion of where AI techniques have been applied to a digital
investigation. These are: acquisition, examination, analysis, and
presentation, similar to the Interpol guidelines [29]. This overall
digital investigation process can be applied to a variety of data
sources: traditional computers, mobile and other embedded devices
(such as UAVs, smart home devices and other IoT devices). It can
also apply to network forensics, cloud forensics, and live forensics.

This paper is structured into three main parts. Section 2 provides
a brief introduction to artificial intelligence (AI) techniques, includ-
ing the most useful references for a digital forensics researcher to
become familiar with the area. Section 3 provides a series of sec-
tions, each describing a sub-area of the digital forensics field where
AI techniques have been already applied. Each of these subsections
has a consistent structure which starts with an introduction to the
subtopic, a overview of the current AI applications in that area,
and finishes with current challenges and future directions. Finally,
Section 4 provides a general discussion of challenges and future
directions for AI applications in digital forensics.

The contribution of this paper is therefore a comprehensive
systematisation of AI research in digital forensics that can be used
by digital forensic researchers and practitioners to identify the latest
applications of AI in particular sub-areas, but also an important
resource for AI researchers looking for real-world application areas
for their new techniques and the challenges that are unique to
applying AI in the specific field of digital forensics.

2 BACKGROUND ON ARTIFICIAL
INTELLIGENCE

AI, or machine intelligence, is the discipline studying intelligent
agents, i.e., an agent that reacts to its environment to achieve an
optimal path to its goal. In Computer Science, AI can be split into
two primary fields; Machine Learning (ML) and Deep Learning (DL).
The success of AI is data-driven in so far as no explicit code controls
the precise output. The datasets used for training the models are
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critical, and data pre-processing is a key step in ML. An overview
of the datasets available for training AI models in Digital Forensics
is provided by Grajeda et al. [41].

2.1 Machine Learning
ML has been widely applied to digital forensic investigation for data
discovery [23, 115], device triage [72, 73], network forensics [81],
etc. Flach [33] outlined the ML ingredients as: tasks, the problems
that can be solved; models, the output of ML; and features, the
workhorses of ML. There are three steps for ML applications: 1) task
definition; 2) feature construction; 3) evaluation and optimisation.

An ML task is an abstract representation of the problem. For
a prediction problem, it can be defined to be either a classifica-
tion/clustering or regression problem, depending on the type of
target labels. Take age estimation as an example. If age is considered
categorical, it can be defined as a classification task; while it could
be a regression task if the age is numeric.

Feature construction is crucial for the success of ML applica-
tion [33]. There are different kinds of features: categorical, ordinal
and quantitative. For text analysis, the raw data is a sequence of
symbols cannot be fed directly to algorithms, bag-of-word repre-
sentation is applied. For image data, patch or contiguous patches
can be extracted. During the experiment, features are transformed
and selected to reducing over-fitting, improve performance or re-
duce training time. The No-Free-Lunch theorem implies that there
is no ultimate feature learner; it is variable depending on the data
distribution and learning algorithm [97].

Models are the output of ML [33]. Model evaluation enables its
refinement, and the process is iterated until the performance is
sufficient. A confusion matrix is able to show the accuracy of a
classification task, where the classification performance of each
class can be found. The F1 score is an average accuracy of each
class, which shows the average performance of the model. Precision
and recall are usually used in the evaluation matrix.

2.2 Overview of Deep Learning
The key differentiator of DL from ML is that the features are not
designed by human engineers. Instead, they are learned from data
using a general-purpose learning procedure [61]. ML tasks require
input that is computationally convenient to process. However, it
is often difficult to engineer features of real-world data such as
images, video, and sensor data. Representation (feature) learning
techniques employed by artificial neural networks (ANNs) allows
a system to automatically discover the representations needed for
feature detection or classification from raw data [61].

A DL model can be described in two stages; optimisation and
inference. The optimisation process, known as training, is used to
update the weights connecting the layers of neurons defined in
the model. The process of weight update is achieved by a back-
propagation algorithm [61]. Before training a DL model, a loss
objective is defined to measure the difference/error between the
predicted outputs and the targets. The model updates its weights
with the objective of minimising the loss function through many
times of iterations. To make it closer to the objective, the mathemat-
ics under the hood are gradient descent algorithms for minimising
the loss [89]. After completing the optimisation, then the model

is applied for inference, namely, making predictions on data that
are unseen during training. One key performance metric e is the
generalisation ability. That says if the model generalises well, it
performs on the unseen (test) data as well as the training data.

DL is often applied for natural language processing (NLP) and
computer vision (CV), but more specific applications include con-
tent filtering [116], e-commerce recommendations [98], and search
result relevancy scoring [121]. Other applications that are discussed
later include camera sensor model identification, image forgery
detection, facial detection and recognition, text clustering, etc. Dig-
ital forensic specific applications include malware classification,
network intrusion detection, file fragment typing, watermarking,
steganalysis, pattern recognition, timeline analysis, etc.

3 APPLICATIONS OF AI IN DF
3.1 Data Discovery and Recovery
One of the early stages of a digital investigation is making the
digital evidence obtained available in a human readable form [55]
(extraction). This can include extracting information from known
file systems and file types, but also recovering deleted data.

3.1.1 State of the Art of AI in Data Discovery. Files deleted within
a file system may be recoverable deterministicly if some metadata
remains. However, in some cases this metadata is absent and the file
content resides in the unallocated parts of a volume. File carving is
the process of recovering such files without the metadata. However,
it is also possible that such files may be fragmented over the disk
and partially overwritten. Garfinkel [38] reported on fragmentation
statistics collected from over 350 disks containing FAT, NTFS and
UFS file systems. While fragmentation on a typical disk is low, the
fragmentation rate of forensically important files such as email,
JPEG and Word documents is relatively high.

As the search space for fragments belonging to a particular file is
so large, distinguishing the file type of a fragment can shorten the
search time. One approach proposed for file fragment classification
used NLP [32]. In this research, a supervised learning approach is
taken based on the use of support vector machines (SVM) combined
with the bag-of-wordsmodel. File fragments are represented as “bags
of bytes” with feature vectors consisting of unigram and bigram
counts as well as other statistical measurements (including entropy).
Chen et al. [23] proposed a novel scheme based on fragment-to-
grayscale image conversion and DL to extract hidden features and
therefore improve the accuracy of classification. This CNN model
was trained and tested on the public GovDocs dataset. The average
classification accuracy achieved was 70.9%. Vulinovic et al. [115].
Vulinović et al. [115] applied a CNNmodel using 1D convolution on
the original byte block. Both feedforward neural networks (FFNN)
and CNNs are tested. FFNNs achieved better results using selected
bigrams as input the highest macro-average F1 score being 0.8138.

Another problem faced during file carving is to determine the
ownership of carved information when the storage media is used
by more than one user. An automated solution to the multi-user
carved data ascription was proposed by Garfinkel et al. [39]. The
features used by the automated ascription system are 1) file system
metadata (MAC timestamp, file owner), 2) file placement (i.e., sector,
fragment) information , 3) embedded file metadata (JPEG camera
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model, Word file save time, etc.). The data used to verify this system
is disk images from the Real Data Corpus [37], a collection of more
than 2,000 disk images made from hard drives that were purchased
on the secondarymarket. The result shows accuracy of classification
is from 65.66% to 99.83%. In the end, this approach achieved a low
accuracy (0%) considering no discernible difference between the
activity patterns of each user.

3.1.2 Current Challenges and Future Directions. The current litera-
ture shows automation in digital forensic investigation employing
statistical measurement for data representation and ML algorithms
for classification. ML techniques have the potential to acquire use-
ful information for investigations more efficiently – leveraging the
accumulation of experience learned from the previous digital ev-
idence analysis. Adversarial attacks are one of the challenges of
AI model development. It has been suggested that the existence of
adversarial attacks may be an inherent weakness of DL models [69].
The adversary can manipulate the input resulting in incorrect out-
put. Adversarial attacks could also be used as a counter forensics
technique. As a result, any pre-trained model could loose its effec-
tiveness during an investigation. To this end, anti-counter-forensics
for adversarial attacks remains an open question.

3.2 Device Triage
With the proliferation of digital evidence, the data volumes en-
countered in investigations is a significant challenge faced by Law
Enforcement Agencies (LEAs). Digital evidence triage was proposed
for the timely identification, analysis, and interpretation of digital
evidence, with a process model proposed in Rogers et al. [88]. Cur-
rently, the prioritisation of device acquisition and processing at a
crime scene is determined by the investigative officer. As more AI
based techniques are developed, on-scene preliminary inspections
could quickly focus the analysis towards the devices most likely to
contain case-progressing information first.

3.2.1 State of the Art of AI in Device Triage. With the increas-
ing significance of mobile device forensics, Marturana et al. [72]
proposed an approach for device prioritisation leveraging data
mining and ML theory. This work presents the result of a study
concerning mobile phone classification in a real child abuse investi-
gation case. The features used consisted of the phone model, phone
contacts, calls made, text messages sent/received/read, number of
video/audio/photo files, URL, email, memos. The experimentation
tested the performance on the feature value represented as numeric
(a number) and category (the number is low, medium or high).

In some subsequent work, Marturana and Tacconi [73] expanded
the triage approach to detect the device’s relative importance using
features from: 1) the timeline of events, 2) the crime’s specific fea-
tures, and 3) the suspect’s private sphere (habits, skills and interests).
The experimentation in this work was conducted on a copyright
infringement and a CSEM exchange case. The dataset applied con-
sisted of 23 cell phones for the CSEM case with 13 digital media
files and 45 copyright infringement-related features. A result of 99%
correctly classified samples on both cases was achieved.

3.2.2 Current Challenges and Future Directions. The lack of a suffi-
ciently large, shared dataset is a challenge for developing AI triage
models. As the triage task consists of a quick, simple examination

and analysis to help investigators to reduce the noise and iden-
tify relevant information quickly, the development of a emulated,
realistic dataset is a substantial task.

Future digital investigation may heavily rely on efficient device
triage. The report of serious digital forensics backlogs [94] indi-
cates comprehensive examination of all digital devices is almost
impossible. Increasing the accuracy of triage would result in less
resources wasted processing non-pertinent data. In addition, and
common for all ML approaches, the training dataset determines the
performance of the model. The higher the volume and quality of
data used to train the model, the better the model will perform.

Investigations involving multiple devices is common, if not the
norm. Multiple device analysis and triage can be integrated. For
example, when determining the importance of the devices, the
actions between them can be considered, e.g., file sharing, device
connections, information exchanging, etc.).

3.3 Network Traffic Analysis
The voluminous nature of data associated with Network Traffic
Analysis (NTA) makes it an excellent candidate for the application
of AI techniques to help filter redundant information and automate
the detection of crimes or other forms of misconduct.

3.3.1 State of the Art of AI in Network Traffic Analysis. Network
investigations often form a part of a bigger investigation involving
incident response, cloud, IoT, mobile devices, wearable technologies
and fraudulent monetary activities. These investigations tend to
involve multiple devices or technologies which have been com-
municating with each other. A wealth of literature is available to
investigators for the use of Intrusion Detection techniques to net-
work data offline in batch mode after the fact. Surveys on the use
of AI in IDS can be found in [81], [92], [14] and [2].

Feature selection techniques impact heavily on the models pro-
duced by AI techniques. The most up to date datasets for intrusion
detection include the CICIDS 2017, CICIDS 2018 [99] and CICD-
DoS2019 [100] whose features are constructed using CICFlowMeter-
V3 [58]. Principal Component Analysis (PCA) has been applied to
these datasets. AI techniques used to model the CICIDS datasets
include SVMs and DL [3, 110, 113]. Auto-Encoders and PCA were
used for dimensionality reduction in [1]. The reduced datasets were
evaluated using classifiers such as Random Forest (RF), Bayesian
Network (BN), Linear Discriminant Analysis (LDA) and Quadratic
Discriminant Analysis (QDA). AI techniques have successfully been
employed for Botnet Detection using ML on DNS requests [12, 101],
while [4] used traffic reduction with Reinforcement Learning (RL).

Elrawy et al. [28] surveyed the challenges of security in IoT and
presented a comprehensive review of current anomaly-based IoT
IDSs. Deng et al. [24] proposed a lightweight ML NIDS for IoT en-
vironments using a combination of fuzzy c-means clustering (FCM)
and PCA, while Amouri et al. [6] presented a NIDS with low com-
putational and resource requirements using decision trees. A data
mining approach for an IoT NIDS using PCA and suppressed fuzzy
clustering (SFC) techniques proved to be well suited to high dimen-
sional spaces producing high levels of accuracy [65]. Pour et al. [83]
applied PCA for feature selection, with clustering techniques, to
IoT data to infer exploited IoT devices, and IoT coordinated probing
campaigns.
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Indicators of Compromise (IOC) are evidence artefacts that are
indicative of a system or network being attacked. Useful sources of
this data can be network packets or network logs. In [85], network
data was collected and features extracted before applying clustering
techniques to extract IOC rules for malware detection.

Android network traffic was modelled for malware detection
in [78]. RF, K-Nearest Neighbour (KNN), decision Tree (DT), Ran-
dom Tree (RT) and Regression were all applied to the CICAnd-
Mal2017 dataset which was generated and made available by the
authors. An updated version of the dataset was evaluated by Taheri
et al. [106] using Random Forest classification. This also utilised
API call data for classification. A DT approach for the detection of
cryptocurrency miners is presented in [112].

3.3.2 Current Challenges and Future Directions. Network traffic
analysis is becoming increasingly hierarchical – providing better
potential for correlation of user data over multiple networks or
devices. Modern networks and devices allow for the broader pro-
filing of individual suspect users and their actions. Correlation of
incidents in new and emerging environments should also be inter-
device dependent. This is of particular importance in areas such
as in the event of an modern automobile crash. Network traffic
analysis will also see growth in inter-user correlation, e.g., the cor-
relation of mobile phone communication through applications over
data networks to identify who a suspect is in contact with most
frequently or most recently relative to a certain time period.

One of the biggest challenges network analysis faces is the huge
increase in volumes of data from new and emerging devices that
needs to be gathered, stored and modelled. Classification and pre-
diction models require accurate and up to date datasets with the
correct features. Datasets traditionally used in this area have suf-
fered from problems such as a lack of relevant or real-world data,
bias and disproportionate classes. In the area of IDS, these datasets
by their nature are always behind the curve in terms of up to date
attacks. This creates issues in the creation and evaluation of accu-
rate models. GDPR legislation also raises issues around user privacy
for inter-event correlation. Novel protocols associated with emerg-
ing devices can result in previously undocumented network traffic
patterns. This can affect the performance of existing pre-trained
AI models, which obviously may not have taken this new activ-
ity into account during training. Encryption poses a challenge to
network traffic analysis but does not hinder it completely. Even
with encrypted networks, AI techniques can still be used to model
statistical information of a network.

3.4 Forensics on Encrypted Data
One of the most significant issues facing digital forensics investiga-
tors around the globe is encrypted data. The prevalence of crypto-
graphically protected devices and data poses an inevitable threat to
digital forensic investigation. If the device under investigation uses
disk encryption, the forensic disk image becomes unusable [64].
Currently, the law of many countries demands that the owner of
the device has to surrender their passwords/keys to LEAs under
warrant. However, unavailability/non-compliance often brings the
investigation of the encrypted device to a halt [114]. Due to the large
bit length used in modern cryptographic algorithms a successful
brute-force attack is computationally infeasible.

Side-channel attacks on encryption algorithms have been proven
as effective key attack vectors [102]. An electromagnetic side-channel
analysis (EM-SCA) attack is performed by observing the EM emis-
sions over time of a device under test (DUT) while it is performing
data encryption/decryption. A single such observation is called
an EM trace containing the three signal characteristics; Amplitude,
Phase, and Frequency. Once a sufficient number of EM traces are
collected, they are fed into an EM-SCA algorithm, e.g., differen-
tial electromagnetic analysis (DEMA) or correlation electromag-
netic analysis (CEMA), to extract the underlying cryptographic
key [53, 54]. These algorithms require the EM traces to be precisely
aligned in the time-domain in order to succeed. Due to the nature of
EM trace extraction, minor misalignments often force the attacker
to extract more EM traces – this alignment issue can be greatly
improved by ML [93]. Furthermore, these algorithms can take a
considerable time to complete, making them difficult to be used in
live device investigation scenarios in digital forensics [60, 107, 124].

3.4.1 State of the Art of AI on Handling Encrypted Data. There
are two potential avenues for EM-SCA that can be assisted by AI
techniques; gaining useful insights without accessing the encrypted
content, and performing cryptographic key retrieval attacks. To-
wards the first goal, various AI approaches have been applied using
power and electromagnetic side-channel observational data [93].
Knowing whether a target device is running the expected soft-
ware/firmware can be useful to the investigator, i.e., a malicious
user may have modified the firmware. DL algorithms such as multi-
layer perceptron (MLP) and long short-term memory (LSTM) have
been used to detect anomalies in IoT devices through power con-
sumption side-channels [117]. Furthermore, various insights such
as the identification of the specific hardware device or software
application, and the behaviour of the software are shown to be
identifiable with DL methods [15, 16, 57, 62, 79, 103].

Ronald Rivest, one of the co-founders of the RSA algorithm, dis-
cussed the inter-relationship between cryptography and ML three
decades ago [86]. Cryptanalysis attempts to retrieve cryptographic
keys by analysing a large amount amount of information, i.e., plain-
texts and ciphertexts, connected by an unknown key. There exists
an interesting similarity between this and ML that eventually paved
way to cryptographic key retrieval attacks leveraging ML and DL.

Template attacks are a common key retrieval approach whereby
an attacker has a testing device similar to the target device [21]. A
template can be built for the test device and subsequently used to
attack the target device. It has been shown that SVMs are applicable
in similar circumstances and provide comparable performance in
key retrieval attacks [45]. Experimental studies show that ML and
DL methods can succeed even when cryptographic implementa-
tions use side-channel mitigation techniques to counter attacks [70].
Furthermore, DL architectures, e.g., CNNs, are increasingly being
applied to this problem [11].

3.4.2 Current Challenges and Future Directions. It is reasonable to
expect that a large percentage of computing devices encountered in
digital forensic investigations in the future will be encrypted. There-
fore, cryptography is turning into a critically important challenge in
digital forensics. With the increasing popularity of software defined
radio (SDR) hardware, acquisition of EM traces becomes easier and
more affordable [10, 68]. Meanwhile, with the rapid increase of
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computational resources, ML and DL methods that are capable of
performing key retrieval attacks can be expected to be more and
more sophisticated. This can lead to a significant reduction in the
time required for key retrieval.

Various side-channelmitigation techniques exist to defend against
attacks to cryptographic implementations e.g., randomisation of
operations, masking variables with random values, accessing crit-
ical variables indirectly via pointers, and hardware shielding [52,
91, 122]. Furthermore, secure cores that are dedicated for crypto-
graphic operations are increasingly present in modern computer
processor chips. Operations performed inside such cores lower the
side-channel information leakage, forcing attackers to use more
sensitive measuring equipment and sophisticated pre-processing
of EM traces in order to perform key retrieval attacks [35, 74].

Software implementations of cryptographic algorithms tend to
evolve over time due to updates carrying bug fixes and improve-
ments. Such changes to software tend to impact the correspond-
ing EM emission patterns. Therefore, ML and DL models that are
trained to recognise patterns or retrieve keys can get affected by
these changes. The ability of ML and DL models to generalise the
minor changes of EM traces needs to be explored further. Mean-
while, tools and frameworks are needed to facilitate the application
of ML/DL techniques for law-enforcement.

3.5 Timeline/Event Reconstruction
Event reconstruction in digital forensics has been defined in terms
of finite state machines by Gladyshev and Patel [40]. However, it
less formally refers to a process that can “convert the state of the
[digital] objects into the events that caused the state” [17]. This can
include simply being able to determine that some event occurred,
or more precisely that an event occurred at a certain time. This
second, more detailed event reconstruction would be achieved by
looking at the timestamps recoverable from digital forensic artefacts.
Sources of timestamps would include times from the file system,
e.g., file modified, accessed, created, entry modified, etc., but can
also include timestamps from inside more complex file formats, e.g.,
Windows Registry, SQLite databases, event logs, etc.

The state of the art in terms of timestamp extraction is Plaso
(log2timeline), which has many plugins and parsers1. However, the
challenge is that the analysis of a system, even with minimal user
activity, would generate millions of these timestamps. Attempts
have been made to perform automated analysis of this high volume
of timestamps and infer a usable activity history from this data.
One approach by Hargreaves and Patterson [44] involved manu-
ally coding the pattern of low-level timestamps associated with a
‘higher level’ event, e.g., a user opening a file on a Windows system
produces a series of ‘low level’ artefacts including entries in the
Windows registry, link file changes, jump lists, and others. This
can be manually encoded and pattern matched. However, this can
be a time-consuming process to identify these changes, code and
test them. It is also potentially error prone as subtle differences in
behaviour of operating system versions could produce incorrect
inferences. There are also representation problems for events, some-
thing that was examined by Chabot et al. [19], with a correlation
of events also discussed in [20].

1https://plaso.readthedocs.io/en/latest/

3.5.1 State of the Art of AI in Event Reconstruction. Despite the
potential of ML approaches in this area, there are relatively few
papers on ML applied to pattern matching in timeline data. Muham-
mad Naeem Khan and Young [76] and Khan [50] discuss a neural
network-based approach for event reconstruction using file system
times and describe that neural networks are appropriate for dealing
with the large volumes of data because of their parallelism and
generalisation capabilities. They tested both feedforward and re-
current neural networks. Turnbull and Randhawa [109] developed
ParFor, which as a result of the explainability problems of other ML
techniques, use Symbolic AI based on an ontological representation
of forensic artefacts and implemented inferences such as computer
on/off. However, Studiawan et al. [104] used DL techniques to high-
light events of interest in a timeline based on positive or negative
sentiment in the text-based representation of events (specifically
operating system logs), e.g., ‘failed password’ or ‘authentication
failure’.

3.5.2 Current Challenges and Future Directions. There are a num-
ber of challenges in this area. Performing event reconstruction
using timestamps inherently makes the assumption that the times-
tamps are correct. There are many reasons why this may not be
the case, e.g., clock drift, manual changing of the system clock,
overwritten timestamps as part of normal system processes, or
anti-forensic techniques. There is some work in mitigating some of
these, e.g., Marrington et al. [71] developed a rule-based approach
to detecting timestamp inconsistencies, but there may be merit in
testing a ML based approach to this problem too. It may also be
possible to use many of the approaches developed in a network
forensics and traffic analysis context and apply to artefact timeline
analysis. Correct inference of user activity is also a challenge; the
low-level events generated for one version of an operating system
are not necessarily the same in other versions and evaluation of the
correctness of the inferences is critical Jeyaraman and Atallah [48].
Finally, labelled and verified datasets for forensic timelines are very
difficult to obtain and time consuming to generate at scale [25].

There are many areas to explore in the application of AI to event
correlation. Aside from identification of individual events, it could
also be possible to have higher level ‘anomaly detection’ applied
to a system. This is a very difficult problem given the multipur-
pose nature of typical computer systems and that the difference
between legal and illegal activity may be very subtle. Nevertheless,
in terms of applications, timelines have great potential to allow
easier analysis across multiple applications, e.g., chat messages in
multiple clients, or across devices [43]. Finally, a timeline-based
view of activity is just one view of a data set, but it can provide
a useful entry point into a dataset, allowing the view to be then
‘pivoted’ to file system views, similar content and back to timelines.

3.6 Multimedia Forensics
Multimedia forensics is a branch of digital forensics that studies
content such as audio, video and images that have been obtained
as part of a digital forensics investigation and can include not just
computers and mobile devices, but also CCTV analysis. There are a
number of aspects to explore in this topic. The first is the problem
of volume. Typical devices will contain thousands of media files
and identifying those that are relevant can be a challenge as they

https://plaso.readthedocs.io/en/latest/
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cannot simply be keyword searched. The second area is analysis to
determine the media’s provenience, which could provide a link to
a suspect. The third area is forgery detection as digital images can
be easily tempered with.

Object detection also has a role to play. A social media crowd
sourcing approach by Europol has been used to trace objects to
combat child abuse. The organisation explains that even the most
innocent clues on photographs can aid investigations. Their aim
is that once the origin of an object is identified, the LEA of the
country involved will be informed to further investigate the lead
and speed up the identification of both the offender and the victim.

3.6.1 State of the Art of AI on Computer Vision. In terms of iden-
tifying relevant images from a large set, the search for objects of
interest in digital images is arduous due to the large volume of
seized devices. The need for automated object detection, specially
in low quality images is required and has also triggered the need
to develop effective image mining systems for digital forensics
purposes [13].

In terms of general approaches, object identification can be tack-
led with CNNs. In 2016, Grega et al. [42] presented the automated
detection and recognition of dangerous situations such as events
where firearms and knives are present in CCTV footage. The algo-
rithm proposed for knife detection is based on visual descriptors
and ML. The algorithm for firearm detection is limited to a pistol
and is based on a PCA approach. In 2017, a crowd-sourced and
CV based approach to fight sex trafficking was proposed; hotel
identification with a search-by-image based on features extracted
from neural networks was implemented [105]. Later in 2019, Xiao
et al. [119] proposed a DL-based object detection and tracking algo-
rithm to identify potential suspects from footage. Their approach
for low quality video/image analysis is based on contrast limited
adaptive histogram equalisation that improve CCTV quality and is
used for Digital Forensic Investigations. Similarly, Jasmine and An-
nadurai [47] proposed a real-time video quality enhancing method
using adaptive histogram equalisation. Also, regarding the use of
illicit substances, Yang and Luo [120] proposed the tracking of drug
dealing and abuse on the Instagram social network by using multi-
modal analysis including methods such as multi-task learning and
decision-level fusion; this approach enabled the ability to identify
drug-related posts and the examination of behaviour patters of
drug-related user accounts.

Specifically related to CSEM investigations, many practitioners
are unfamiliar with AI, but demand automated nudity, age and skin
tone detectors [90]. This is unsurprising as it has been reported that
some law enforcement personnel have suffered ill effects due to
the continuous exposure of CSEM [118], and it has been proven to
affect some groups by causing secondary traumatic stress disorder
[67, 90]. To lessen the exposure to CSEM, multiple approaches have
been considered. Skin detection algorithms could potentially sift
unnecessary images and flag inappropriate content. In 2005, Ap-
Apid [8] developed a skin colour distribution model based on RGB.
The aforementioned nudity detection algorithm had a 95% recall
with a 5% false positive rate. Later in 2016, Deep CNNs were used
by Nian et al. [80]. The latter demonstrates the advantage of using
AI over hand-engineered visual features that are hard to analyse

and select. The notable trend of CNNs has been flooding research
topics in the past years.

Another relevant CV area is age estimation. In 2020, Anda et al.
[7], proposed the segregation of the age component from a CSEM
investigative model. This approach tackles specifically the facial
age estimation problem for underage subjects, which can be further
consolidated with a nudity component to create a CSEM ensemble.
This approach has achieved a mean absolute error (MAE) rate of
2.73 years. In order to tackle unbalanced dataset and bias, a balanced
dataset generator was used [31]. Age estimation is a challenging
task for both humans and computers. The range of factors that
influence age prediction are considerable. Environment, habits,
diets, use of anti-ageing products, smoking, drinking, drug abuse,
skin tone, gender, etc. are only some identifiable parameters that
can change the course of the appreciation of age. Nevertheless,
in certain age groups (newborn and children), the influence of
these factors has less of an impact. Age prediction may also have
other applications for digital forensics including suspect and victim
identification. Missing children cases could benefit from Generative
Adversarial Networks that are able to estimate images of victims
creating aged versions from an input image.

3.6.2 State of the Art of AI in Forgery Detection. Finally, as men-
tioned above, detecting forgeries in images is also a challenge. A
digital image has been accepted as a “proof of occurrence” of an
event [51, 96] and so it is important to demonstrate that it is au-
thentic. Farid [30], classified tools to detect image forgery into five
categories:

(1) Pixel-based techniques that detect statistical anomalies in-
troduced at the pixel level.

(2) Format-based techniques that leverage the statistical corre-
lations introduced by a specific lossy compression scheme.

(3) Camera-based techniques that exploit artefacts introduced
by the camera lens, sensor, or on-chip post-processing.

(4) Physically based techniques that explicitly model and de-
tect anomalies in the three-dimensional interaction between
physical objects, light, and the camera.

(5) Geometric-based techniques that make measurements of ob-
jects in the world and their positions relative to the camera.

The previous techniques are mainly statistically, geometrically
and physically-based scientific methods, and are solely for the vali-
dation of the integrity of images. Nevertheless DL based techniques
have also been used to detect image manipulation [9, 22, 84, 123].
The first three studies employ CNNs and the final study implements
a Stacked Auto-encoder (SAE) approach.

3.6.3 Current Challenges and Future Directions. Automated mech-
anisms to detect CSEM have been used in the past with skin tone
detection algorithms or hash comparisons. Nevertheless, either the
performance has not been adequate or the approach used has been
trivial. The rise of CNNs has enabled impressive and promising
results. There are still a myriad of application to explore that could
improve the performance of algorithms to detect CSEM. Images
with low resolution and visibly challenging to the human eye could
be tackled with the application of specific models trained on low
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quality data. Objects that have been found on CSEM with low qual-
ity can benefit with the creation of ensembles for different type of
items matching certain quality standards.

However, the need for shared, well curated datasets in the re-
search community is clear. Data pollution present in datasets that
are already being shared in the community may present a risk to
further research. Keeping big data under control may become a chal-
lenge and could be subject to data protection acts that would hinder
certain types of longitudinal research. Unavailability of information
due to ethical concerns and lack of transparency can impede the
creation of reliable models. Non-robust models could also be subject
to adversarial attacks that could bypass certain systems such as
nudity detectors, and age limit systems.

Nevertheless, automation in multimedia forensics could help
alleviate the digital forensic backlog by optimising analysis and pri-
oritise artefacts in an intelligent manner. As previously highlighted,
the usage of CNNs in digital forensics shows great promise. Pro-
posed models should emphasise expertise while focusing on solving
smaller problems rather than generalising to attempt to solve sev-
eral problems. Ensemble models are considered to be more stable
and, most importantly, predict better than single classifiers [63];
therefore, an ensemble of expert models would improve the perfor-
mance while decreasing errors.

3.7 Fingerprinting
Device fingerprinting is a growing area of digital forensics. It ranges
from server-side browser fingerprinting [27] (based on the unique
set of browser and extension metadata/configuration sent to a web
server), camera sensor identification [66] (based on subtle imper-
fections of camera sensors), to malware behavioural analysis and
classification [59] (based on program execution patterns).

3.7.1 State of the Art of AI in Fingerprinting. The task of fingerprint-
ing lends itself well to AI classification techniques. For example,
malware classification has been a popular application area, with
significant existing work in this area [36]; both static [59, 77] and
dynamic analysis [46, 56]. With respect to the aforementioned me-
dia provenience issue, Tsai et al. [108] were able to obtain highly
accurate predictions with SVM on similar photographed scenes gen-
erated both by traditional and mobile-phone cameras. Also, CNNs
have shown promising results on image recognition, video analysis
and NLP.

Similarly to how scratches on a bullet facilitate the identification
of theweapon that shot it, subtle imperfections in digital camera sen-
sors leave their imprint on the resultant digital photos and videos.
This allows the subsequent association of this content with a spe-
cific camera sensor [66]. This approach can be used to identify both
the specific make/model of the source camera, e.g., an iPhone 11,
and potentially the specific camera, e.g., this iPhone 11. Identifying
the camera model with which a video has been taken can provide
valuable insight in an investigation. Freire-Obregon et al. [34] imple-
mented a Source Camera Identification (SCI) method that is able to
infer the noise pattern of mobile camera sensors/fingerprints. Their
CNN approach has achieved over a 90% of accuracy in determining
not only the brand of the phone but also identifying if the front
or rear camera was used. CNNs are capable of performing image
manipulation detection as well as camera model identification.

In a similar vein, fingerprinting techniques have also been used
for authorship attribution. This authorship attribution ranges from
open source intelligence/social media attribution [87], source code
attribution [49] and malware attribution [5]. Authorship attribution
relies on identifying unique programming or language traits of the
individual behind the keyboard.

3.7.2 Future Directions. Device and user behavioural fingerprint-
ing can greatly aid in anomaly detection. For networked devices,
this can result in more accurate host-based and network-based
intrusion detection. Modelling the usage/behavioural fingerprint
of each user on a system can similarly be used as an indicator of
account compromise. In online video streaming scenarios, camera
sensor detection combined with device fingerprinting can be used
to identify the source of the stream.

4 CONCLUSION
This paper has shown how a range of AI techniques are currently
used across different areas of digital forensics. It has also high-
lighted common challenges including availability of data sets in
some areas, specific difficulties in explaining the results when cer-
tain techniques are used, and even challenges in releasing models
where potentially restricted training data could be inferred from the
models [82]. However, despite these challenges, there is enormous
potential for future work. As discussed above, this is both in terms
of improving the performance of some of the current techniques,
but also that there are some approaches that have not yet been
tested in individual areas. These gaps should now be more easily
identified as a result of this systematisation of knowledge and help
accelerate developments in this field.

4.1 Future Directions
The previous sections have shown that there is significant existing
work in the application of AI to specific areas of digital forensics.
This section discusses general challenges, and potential opportu-
nities including unexplored areas where existing and emerging AI
techniques have not yet been applied.

In terms of general challenges, improving the accuracy of tech-
niques is an obvious focus area. Specific to digital forensics, train-
ing models and measuring the accuracy is a challenge because of
the lack of large, clean, labelled datasets in some areas or exist-
ing datasets not being publicly available. While there are extensive
datasets that can be used to train computer vision based approaches,
the availability of sensitive datasets, such as CSEM datasets, are
understandably and necessarily restricted. Datasets for whole hard
disk approaches, e.g., needed for timeline analysis, do not exist in
a useful manner; where user activity is clearly documented and
labelled allowing DL techniques to identify relevant features. Even
if such disk images were produced, having sufficient background
‘noise’ is also difficult, meaning that techniques developed in a re-
search setting are unlikely to work when exposed to data from a
real investigation. Automated digital ‘story’ generation is needed
to address these issues.

While Explainable AI is a general computer science problem, for
digital forensics this is paramount for the court admissibility and
understanding of evidence. However, it should be highlighted that
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there is some subtlety to this. For example, an AI process report-
ing that a system containing criminal activity needs to be able to
produce a very clear explanation of why that is the case. However,
a human-in-the-loop approach that is designed to highlight to an
investigator data that is likely to be relevant does not necessarily
have the same explainability requirement and is something called
for by law enforcement [90]. There is still a danger here in that bias
can be a problem in investigations in general [75], but a system that
is promoting ‘relevant evidence’ has the potential to bias an investi-
gator. A related problem is validation – increasingly necessary for
methods used in a digital forensic context. This means that a tech-
nique should be applied to known data and produce an expected
result. Subsequently, once validated, that technique can be used.
New versions of software, or in the case of AI models, new models
mean the techniques should be re-validated. The edge case is in a
scenario where an AI model is updating live, for example learning
from on-going case processing to expedite evidence discovery in
future cases. In this case, the result the technique may produce may
change on a daily basis, posing a significant validation challenge.

Finally, it should also be considered whether sharing models is
appropriate in some contexts. AI trained models in the context of
GDPR and summary of attacks such as ‘model inversion’ and ‘mem-
bership inference’ is discussed by Veale et al. [111]. This is therefore
worth considering when developing digital forensic solutions using
AI and potentially sensitive training data.

Despite these challenges, there are many opportunities to en-
hance AI applications and to apply AI to additional areas of digital
forensics. These include inference of behaviour from data obtained
from novel sources including smart homes, IoT sensors, vehicle
forensics, and combinations thereof. Indeed AI techniques could
potentially assist any time there is a need to correlate data from
multiple sources, either from multiple suspects, devices or cases.
Non-AI based efforts such as standard form of representations, e.g.,
CASE [18] will be critical for such efforts.

There will also be significant opportunities in the future for the
investigation of AI based systems themselves. Determining the
cause of a decision made by a self-driving car, a smart building, or
a SCADA system, will be a new area for digital forensics, although
the concept is discussed by Schneider and Breitinger [95]. The
investigation of these systems will require significant effort on
behalf of the investigator in terms of understanding the models,
their training data, and the state of the model’s inputs when the
decision was made. This will also require a reasonable level of
explainable AI. Of course, the investigation of digital forensic AI
systems themselves will be far from exempt from this scrutiny.
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