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Abstract—When conducting modern cybercrime investigations,
evidence has often to be gathered from computer systems located
at cloud-based data centres of hosting providers. In cases where
the investigation cannot rely on the cooperation of the hosting
provider, or where documentation is not available, investigators
can often find the identification of which distinct server among
many is of interest difficult and extremely time consuming. To
address the problem of identifying these servers, in this paper
a new approach to rapidly and reliably identify these cloud
hosting computer systems is presented. In the outlined approach,
a handheld device composed of an embedded computer combined
with a method of undetectable interception of Ethernet based
communications is presented. This device is tested and evaluated,
and a discussion is provided on its usefulness in identifying of
server of interest to an investigation.

I. INTRODUCTION

The National High Tech Crime Unit (NHTCU) in a Euro-
pean country conducts investigations to crimes targeted at ICT
infrastructure, committed using new technology or methods
that have the potential to be incapacitating to society or have a
high impact. This impact can be quantified in terms of financial
losses, incurred business continuity or recovery costs and loss
of goodwill in the form of public trust or confidence. Today,
in its investigations the NHTCU often conducts searches in
cloud-based data centres to collect evidence by preserving
stored data on hosted computer systems or to conduct wiretaps
on these computer systems.

In most cases these computer systems are owned by a
trusted hosting company that leases these computer systems
to end-users. Under subpoena, the hosting company locates
the exact computer of which data is requested and hands this
server over to the investigators who will assert some other
investigative power such as the creation of a forensic copy of
data, placing a wiretap on the system or conducting live data
forensics.

However, the assistance of the hosting provider is not always
possible. Several times each year the NHTCU is confronted
with co-located servers on cloud platforms ( computer systems
owned by a third party that are hosted in a data centre). Often
these co-located servers are part of a larger infrastructure,

where the networking devices such as switches and firewalls,
are also owned by the customer of the data centre. An
investigator may find themselves in a situation where the
hosting provider or data centre itself cannot be trusted to
provide accurate information. In these cases the investigator is
confronted with multiple servers without any documentation
about these servers. This poses a challenge in identifying the
computer system of interest to the investigation.

One approach available to the investigator is the use of
the European criminal process law which provides for the
interception of network traffic [1]. Because of the impact this
may have on privacy, a warrant for interception can only be
given by an investigative judge. Analysis of intercepted traffic
to the individual computer systems could reveal identifying
information about these systems such as upstream source IP-
address and Ethernet MAC address and HTTP headers like
Server and Host. So while the interception of network
traffic may be possible in many cases, the investigator needs
to consider the impact this activity will have on privacy. This
is especially true when the discovery process may require the
interception of traffic from computer systems that are unrelated
to the investigation. This impact may be considered dispro-
portionate and therefore a less reliable method of identifying
servers would be utilised. The argument can be made, that,
when performing discovery and, when the objective is the
preservation of data, the identification of servers and the traffic
metadata, as permitted by criminal process law [1],that needs
to be gathered to do so is an integral part of this search.
Following this interpretation, it follows that Article 125n [2]
applies too, which states that all information gathered during
a search that is of no interest to the investigation needs to be
destroyed and that a written report of the destruction needs to
be compiled. When applied to the problem of identification
of servers, this means that an audit trail of all identification
attempts needs to be kept, where the investigator can mark
identifying information as either relevant, or irrelevant. In the
latter case data can be destroyed immediately, but a record
of destruction needs to be kept. Preferably no information is
displayed to the investigator at all, other than a confirmation



that a pre-determined identification is recognised.
Recent approaches in literature are concerned with the

creation of wiretaps for Ethernet networks by placing de-
vices inline [3][4][5][6], or requiring administrative access
to configure a switch for port mirroring [7]. To place a
wiretap in-line with the connection to the observed device, the
connection to that device needs to be interrupted. This poses
no problems when creating a long-term wiretap for network
management or security purposes, e.g., to connect an Intrusion
Detection System (IDS) sensor [3]. However, interruption of
an Ethernet link can be signalled and logged at either side of
the connection. This may pose a problem for law enforcement
as this can alert an adversary that the connection has been
tampered with.

Therefore, a new technical solution is sought for to intercept
Ethernet traffic for the purpose of identification of computer
servers. For this, a method needs to be developed that is
undetectable by the operator of the computer system. In most
network investigation, most computer systems are identified
by the public IP address. The solution must at least allow the
investigator to determine the IP-addresses used by a computer
system. Extending to other properties of network traffic, the
new solution should allow users to add other identifying
properties of the network traffic that are more appropriate to
identify the computer system.

The rest of this paper is organised as follows: Section II
shows the related work of this research on different approaches
on wiretaps for Ethernet networks. A new approach for the
identification of computer server using temporary wiretap s
is presented in Section III. The software components of our
device is outlined in Section IV. A discussion is provided
on the wiretap attachment in Section V. An evaluation of the
proposed device and an analysis of its performance is provided
in Section VI. The conclusion and a discussion on future work
is outlined in Section VII.

A. Aim and Contribution of this Work

The aim of the work presented as part of this paper is to
expedite digital investigations in a cloud data centre environ-
ment. This can be achieved by focusing the investigation at
an early stage to pertinent servers through the identification of
suspicious or targeted network traffic.

In this paper, a device implementing a method for un-
detectable interception of Ethernet network traffic for the
purpose of identification of computer systems is presented.
This new solution was designed to be fit for use in the
field during investigation. As a result, an easy to operate
handheld device was engineered. This solution captures as
little information as possible and only stores data permanently
when it is considered relevant to the investigation by the
operator. Alternatively, the operator has the possibility to not
display any addresses, other than the confirmation of the
appearance an address of interest that has been defined. An
audit log of all operator actions for reporting is mandatory
and, while real time timestamps are desirable at a minimum

relative timestamps of activities and discoveries need to be
logged.

II. RELATED WORK

In this section, related work on wiretaps for Ethernet
networks is discussed. This work can be divided in to main
categories: passive and active approaches.

A. Active Approaches

Switch Port Analyser or SPAN [7] is a method of inter-
cepting (wiretapping) Ethernet traffic for purposes such as
network monitoring. SPAN is a technique where a switch
has one or more ports defined as mirror ports to which
monitoring devices can be connected. A network administrator
can set up a mirroring policy that identifies types of traffic
that is being copied by the switch from the receiving port(s)
to one or more mirror ports for analysis. In [7] the mirrored
traffic is distributed to mirror ports in a round-robin manner,
thus distributing traffic over multiple ports to make it more
likely that the mirror ports can handle the copied data without
dropping traffic.

[4] proposed a forensics evidence collection device called
PNFEC. The proposed device uses an embedded computer
with multiple network interfaces and open-source software to
collect live network evidence from single hosts. The PNFEC
is placed inline between a network node of interest and the
rest of the network. After being placed inline between the
network node and the network, the device acts as a transparent
Ethernet bridge [8] between the observed network node and
the rest of the network. The bridge is created using the
brconfig command in the OpenBSD operating system, thus
using the bridge kernel driver to forward traffic from one
network interface to another.

An inline wiretap device is proposed in [6]. The proposed
device is connected in parallel with the network cable to the
observed device using alligator clips. A faster and more robust
way of connecting to the network cable is left for further work.

The parallel connection through the proposed device is
routed through electromechanical switches (relays) for each
wire. These relays are in a normal closed state; therefore the
original cable can be cut safely when the relays are unpowered.
When power is applied to the relays, the relay contacts divert
the Ethernet signals to two network adapters that are operating
in a transparent bridge, as described in [4]. Should power to
the device fail, the relays fall back to a state where the cable
is directly connected again, bypassing the bridge. This setup
also makes it possible to conduct Man-in-the-Middle (MitM)
attacks and selectively block traffic.

B. Passive Approaches

Instead of actively bridging Ethernet [4][6] or copying
network traffic in switches [9], it is possible to wiretap 10-
Mbit/sec and 100-Mbit/sec Ethernet links passively using
modified unshielded twisted pair (UTP) cables [3]. In [3], four
methods of modifying UTP cables to create receive-only UTP
cables are evaluated for use in network intrusion detection



systems (IDS). The modified cables provide the necessary
signals to enable the link on an upstream hub or switch and
to introduce errors in data sent from the attached sniffer to
prevent an upstream hub or switch from recognising this data.
The cables rely on an Ethernet hub to forward packets to the
cable, as described in [3]. The proposed cables are compared
to Test Access Ports (TAPs) that sit in-line between the hub or
switch and the observed device and SPAN ports, as described
above. A TAP is described in [3] as: “a device that allows
to examine network traffic without causing any data stream
interference”, acting at OSI layer 1, the physical layer. A
connection diagram for a TAP is also given in [8].

An implementation of a TAP is the Throwing Star LAN
Tap, designed by [5]. The Throwing Star LAN Tap is a star
shaped printed circuit board with four RJ-45 connectors on the
points of the star. The circuit board needs to be placed in-line
between the observed device and an upstream network device,
e.g. a hub or a switch. The Throwing Star LAN Tap inserts two
220pF capacitors in the signal path of the observed device to
limit the bandwidth of its connection. This limited bandwidth
prevents the target devices to auto-negotiate a link on 1000
Mbits/s, which cannot be wiretapped using the Throwing Star
LAN Tap and forces them to revert to a 100 Mbit/s link which
can be monitored with the Throwing Star LAN Tap.

The Throwing Star LAN Tap is published as open-source
hardware by its designer and sold commercially as a kit of
components to be assembled by the user.

C. Discussion

To create wiretaps for Ethernet communications the previ-
ous work either places devices inline [3][4][5][6], or requires
administrative access to configure a switch for port mirroring
[7]. This problem is addressed in [6] where electromechanical
switches (relays) are used to divert the connection to a trans-
parent bridge before interrupting the physical connection to
the observed device. However, placing a bridge inline between
the observed device and an upstream component, as proposed
in [4] and [6] may alter the physical layer characteristics
of the Ethernet connection, i.e., the link speed and duplex
type of the connection may differ from the original device.
Bridging the connection may also introduce additional latency
to the network traffic, which may be detectable from either
the observed device or connected devices.

The Throwing Star LAN Tap [5] is constructed deliberately
to alter the characteristics of the Ethernet connection that is
to be observed to ascertain that it conforms to a media type
that can be wiretapped passively.

Changes in the physical layer characteristics may interrupt
connectivity, either temporarily while the link renegotiates to
a media type that both sides of the connection can support,
or permanently when no common media type can be agreed
on given the changed configuration. This may be the case if
the network interface at either side does not support auto-
negotiation of the physical layer media type, or when this
auto-negotiation is administratively overruled [10].

Fig. 1. The Proposed Device Connected to an Ethernet Cable

Development of a fast and reliable method of attaching a
wiretap device to a network cable is stated as a requirement
in [6], but left open for future research.

The methods proposed in this paper focus on the identi-
fication of computer systems using temporary wiretaps. This
problem may be very specific to law enforcement; it is not
addressed in the literature found on the subject. The proposed
method addresses the open problems found in previous work;
i.e. creating wiretaps without interfering with the Ethernet
physical layer in a way that is detectable from the observed
device(s) and making reliable temporary connections to the
network cable(s) that connects to the observed device(s).

III. NEW APPROACH FOR CLOUD SERVER FORENSICS
USING TEMPORARY WIRETAPS

To address the issues as defined in previous sections, this pa-
per proposes a handheld device that passively intercepts traffic
from an Ethernet twisted-pair cable, as can be seen in Figure 1.
An embedded computer integrated in the device processes the
intercepted data and displays identifying characteristics of the
traffic on a liquid crystal display (LCD). To attach the device
to the Ethernet cable of the computer system that is to be
identified, a fast and reliable method of creating a test access
port (TAP) to an active cable is suggested, as displayed in
Figure 1.

A. Selection of Hardware and Software

1) Hardware: To process and display the intercepted net-
work traffic, moderate computing resources are required. In



fact, the computing platform needs to provide an Ethernet
network interface to capture packets on and needs to have
input and output ports (general purpose input and output or
GPIO) to implement the user interface. Another important
requirement is the capability of supporting a common op-
erating system, e.g., Linux. By using a common operating
system, a broad selection of existing software can be used
for this approach. This has another advantage that most of the
development time can focus on the actual application instead
of the underlying software infrastructure, e.g., scheduling,
network drivers, packet dissectors. The device is designed to
be used on location in a data centre moving between different
servers to identify pertinent systems. Therefore, a few hours
of autonomy on battery power is preferable, but a less hard
requirement than the above as wired power should normally be
available. Various low-cost embedded boards that are capable
of running the Linux operating system are on the market at the
time of writing. The actual selection is not critical and given
the same underlying operating system, it can be expected that
these boards can be used interchangeably with only minor
changes. In the approach outlined as part of this paper, the
Raspberry Pi platform [11] was chosen as this hardware meets
the aforementioned requirements, is affordable and lightweight
and can be easily powered by USB battery packs.

2) Software:
• Linux is chosen as the operating system for the system;

specifically the Raspbian [10] distribution, which is a
variant of the well-known Debian Linux distribution,
adapted to the Raspbery Pi hardware and optimised to
the Pi’s ARMv6 CPU. As stated in [10], on the initial
releases of Raspbian, over 35,000 software packages were
available for the platform. Specifically to this project, the
most common network forensic software, e.g., Wireshark
and tcpdump, is available as ready built packages on the
Raspbian Linux distribution.

• The Python programming language is chosen to develop
the application integrated in the device, because this
language is well supported on the Raspberry Pi. Many
modules have been written in the Python programming
language to interact with the Raspberry Pi’s input/ output
(I/O) ports, which means that less development time
needs to be spent on implementing the details of inter-
facing with hardware, e.g., an LCD display for the user
interface, etc.

• Wireshark and tshark: In [6] different network analy-
sis software programs are compared for the use in an
embedded device. The choice in [6] is the common
program tcpdump, for its low memory requirements. The
Raspberry Pi, has 512 MB of RAM available, which
is enough to support all the compared network analysis
software. The program Wireshark has the advantage over
tcpdump that it has a command-line variant, tshark
that has a configurable output format. Indeed,tshark
can be compiled with an internal script interpreter. This
interpreter allows for programs written in the program-
ming language Lua to be run within the tshark or

Fig. 2. System Block Diagram

Wireshark programs [12]. These features make tshark
better suited for this application than tcpdump, which
produces human-readable output. Human-readable output
is generally harder to parse than a structured (XML or
delimited text) output format that tshark offers.

• libpcap, pypcap and dpkt: Another option is to
integrate network capture and analysis into the network
identification program. Most network analysis software is
based on the libpcap library [13], therefore instead of
using an external network analysis program, a language
binding to the libpcap library can be used instead. This
has the benefit that no external programs need to be
called, providing better control over the actions on the
network capture interface and the captured data. For the
Python programming language a libpcap extension
module with the name pypcap has been developed
[14]. The pypcap module provides raw captured traffic
to the user; another module is needed to dissect the
captured data. Dissection is the interpretation of captured
network traffic, i.e. the decoding of fields in each of the
protocols in a packet. A Python module that is capable of
dissecting the data that is captured with pypcap is dpkt
[9]. For this application it is needed to dissect packets
until the IP-header. For this purpose, the combination of
pypcap and dpkt library is sufficient as dpkt handles
both the Ethernet and IP-header information. Through the
use of these libraries, most functionality needed for the
system can be integrated in a single program. Though,
conceivably additional dissectors are necessary to decode
other identifying protocols.

B. System Architecture

First of all, a new hardware user interface was developed
for the proposed system.

1) System Overview: The system is designed to be used as
a handheld device and components are selected for their small
size. At the time of writing, no enclosure has been selected
for the device, though. The hardware of the device consists of
four parts:

• Computer
• Display
• Buttons
• Wiretap Interface

The relationship between these parts is shown in the diagram
in Figure 2.



2) Display: The display that is used is a small Liquid
Crystal Display (LCD) module based on the PCD8544 48x84
pixels display controller [15]. These displays are originally
produced for various Nokia mobile telephones (e.g. Nokia
3310 and 5110). The PCD8544 controller is connected to the
Raspberry Pi’s Serial Peripheral Interface or SPI bus [16].
The SPI bus is a serial bus that has one master and one or
more slaves. Serial transfer is synchronous to a clock that is
produced by the master device. In this project the Raspberry
Pi acts as the SPI master device. The PCD8544 has no built
in character set for displaying text; it is purely a bitmap
display. Therefore all text that is to be displayed needs to
be generated in software and sent as pixel data to the display.
A software module for the Python programming language on
the Raspberry Pi is available as open-source software [16];
this module is extended with alternate fonts for the developed
system.

3) Buttons: The user interface uses two buttons for user
input; these buttons are connected directly to two GPIO lines
of the Raspberry Pi as show in Figure 2.

These lines are kept on a defined level by means of pull-up
resistors, the buttons switch to ground. This means that when a
button is pressed the voltage on the corresponding GPIO line
will transition from the supply voltage of 3.3 volt to about
0 volt. When the Raspberry Pi observes a falling edge, i.e.,
the signal on the GPIO line going from the supply voltage to
zero volts. This will cause an interrupt that the user-interface
software will handle to process user interaction.

IV. SOFTWARE COMPONENTS OF THE PROPOSED DEVICE

Fig. 3. Graph Representation of the System’s Module Dependencies

Most work in our approach went in creating modular
software for the proposed device. The software consists of
a main application, that dynamically loads and executes plug-
in modules. The plug-in modules facilitate augmentation of
the system with different means of identifying computer
systems. The plug-in modules present the main application
lists of parameters that they require or provide. The main
application will prompt the user for these parameters and
will display them after running a module. This means that
plug-in modules do not necessarily need to have a user-
interface implemented. All parameters entered and all results
provided by the plug-in modules can optionally be logged
in an audit log that will aid investigators in reporting their

actions. Both the main application and the implemented plug-
in modules use a Python module called UI. This UI module
implements the user-interface for the system, providing a range
of widgets to prompt for data or present data to the user.
Two identification plug-in modules have been implemented
using this framework; one module SourceAddr.py lists all
Ethernet and IP addresses observed on the TAP and presents
these addresses. The second module KnownIP.py requires
input of a known IP address and will present the user with
a counting of packets seen and packets where the source IP
address matches the entered known address, confirming it is
present in the intercepted traffic. This functionality allows for
identification of a computer system without revealing any other
information to the investigator. Details of these modules will
the described in the following sub-section.

A. Overview

The architecture described above is depicted in Figure 3,
as this graph shows, all software necessary for interfacing
with the hardware (the modules RPIO, pcf8544 and Font) are
abstracted from the other components by the user-interface
module UI. The plug-ins are enumerated by the main applica-
tion and loaded dynamically when the user selects a plug-in
to use, this is denoted by the dashed lines in the graph in
Figure 3.

B. User Interface

The user-interface module UI is responsible for both ab-
straction of the underlying hardware of the system as well as
providing the other components with user-interface widgets
to request information from the user or present information
to the user. The provided widgets are self-contained to the
one who needs no knowledge of the underlying hardware
implementation to use the user-interface widgets in other
components of the system, e.g., a new plug-in module that
is to be created.

C. Main Program

Using the user-interface widgets from the user-interface
module UI, the main program handles the following tasks in
order:

• Initialise the user-interface.
• Enumerate all plug-in modules.
• Present a selection list of plug-in modules to the user.
• Allow for audit log to be kept.

– When audit log is kept, ask for present date and time.
• Request all parameters that the plug-in module needs

from the user, committing these to the audit log, when
enabled.

• Run the plug-in module until it exits, possibly on user
request.

• Present results to the user, committing these to the audit
log, when enabled.

• Rerun the plug-in module with the same parameters on
user request.

• Run another module on user request.



Because most of the user-interface handling is abstracted
in the UI module, the tasks describe above are to be found
in the same order in the main program. To allow for new
functionality to be added to the system without alteration of the
main program, a plug-in system was designed for this system.

D. Plug-in Modules

Two plug-in modules have been developed for the applica-
tion described above. The plug-in modules can be considered
the actual solution to the problem as stated in the introduction,
the hard- and software described so far supporting these plug-
in modules. It is considered necessary, though, because new
cases that NHTCU encounters have different requirements,
e.g. different identifying properties of the intercepted network
traffic should be investigated. It is conceivable that the same
framework is not only used for Ethernet but also for wireless
devices added to the platform, the plug-in structure allows
the platform to be extended for such new use cases. As
mentioned before, two plug-in modules have been developed.
Both modules aim to solve the problem of finding a host with
a known IP address among a number of computer systems
connected through Ethernet.

SourceAddr Plug-in Module uses the wiretap technique
described in Section V to gather upstream network traffic from
the computer system where the investigator tries to identify.
Of the upstream network traffic both the Ethernet and IP
source addresses are decoded and immediately presented to
the investigator. When the investigator has received enough
identifying information to make a decision, the acquisition
and decoding of traffic can be stopped with a button press, all
unique source addresses are then handed to the main appli-
cation. The gathered source addresses can then be committed
to the audit log, when this log is enabled. As described in
Section III-A2, the Python modules pycap and dpkt are
used for capturing and dissection of network traffic.

KnownIP Plug-in Module has the same goal as the
SourceAddr Plug-in Module. However, it identifies the ob-
served host by the source IP address that the host uses
upstream. Instead of listing all observed addresses, though,
this module only shows a count of packets of which the source
IP address matches an IP address that the investigator entered.
The purpose of this change is to minimise the impact this
tool imposes on the privacy of the users of the computer
systems that is used. The SourceAddr Plug-in captures no
more than the 34 bytes necessary to parse the Ethernet and
IP header of packets to prevent the capture of other data than
header information. As IP addresses are considered identi-
fying information, the presentation of this information about
computer systems irrelevant to the investigation is undesirable.
Therefore, the KnownIP module presents this information to
the investigator by only displaying a tally of the number
of packets where the source address matches the address of
interest of the investigation versus the total number of packets
processed.

Figure 5 is an example of the information the KnownIP
plug-in presents, compared to the user-interface of SourceAddr

Fig. 4. User Interface of the SourceAddr Plug-in

Fig. 5. Information Presented by the KnownIP Plug-in

as shown in Figure 4. The detail is only the packet counts
and it provides no address information that was not known to
the investigator in advance. The level of detail is sufficient
to identify a server based on matching source addresses,
when this match is made, one could consider confirming this
match using the detail of the SourceAddr plug-in. As the
observed host had transmitted one or more packets of which
the source address is matched, it is likely to be of interest
to the investigation. This may warrant observing the traffic in
more detail to ascertain the match found from the KnownIP
plug-in. The SourceAddr plug-in can be run on return to the
main application, this choice will be logged in the audit log,
when it is enabled. This allows the investigator to write a
detailed reasoning behind their actions in a report based on
the information provided from the log file.

E. Audit Logging

Another purpose of the plug-in modules is that audit logging
can be enforced through the main application. The reason
behind this is that enough abstraction is provided by the
framework and that plug-ins can be written by different
developers while maintaining a similar usage experience and
expectations can be made on a minimum standard of audit
logging that will be done. The parameters decisions may have
been made upon are deemed the most important elements of an
audit log. Together with timestamps in a resolution of at least
a minute, these will provide all details the investigator needs
to compile a report of their actions. In fact, the Raspberry Pi
does not provide a real time clock that keeps accurate time
between shutdowns.



In this application, the network interface of the Raspberry
Pi is used with a receive-only cable to intercept traffic.
Network communication is therefore impossible. This makes
it impossible to synchronise the operating systems clock over
the network using a time synchronisation protocol (e.g. NTP
the Network Time Protocol). A real time clock with battery
backed-up hardware can be added to the Raspberry Pi, this
will use two more GPIO lines, but was not examined in our
approach. Instead, in this approach the user is asked, when
logging is enabled, to enter the current date and time. Although
unsynchronised, the operating system does update a clock that
will be relatively stable considering the time resolution report-
ing needed and the expected timeframe of the investigators
actions. From the date and time entered by the user an offset
from the operating system clock is calculated. This offset
is then used by the unmodified operating system clock for
logging with timestamps of satisfying accuracy. It should also
be noted that the choice not to set the operating system clock
but to use an offset from this clock has a disadvantage that
metadata file will use the unsynchronised operating system
time. However, the current plug-in modules do not use any
file metadata. The process of entering the current day and time
does not take a very long time. When no reporting is necessary,
though, it can be experienced as a nuisance therefore the
user is given the option to bypass logging. This is a trade-off
between enforcing logging and usability. During development
the option to bypass logging is appropriate, it can be argued
though that in general using, logging should be enforced at
all time because the habit of bypassing the logging may arise
among users. This habit may subsequently impair the quality
of reporting by the investigators.

V. WIRETAP ATTACHMENT

As described in Section II, an open problem is the non-
invasive attachment of wiretaps to an existing connection. In
[6] alligator clips are proposed as a means of connecting to
an Ethernet UTP cable. Alligator clips pierce neither the outer
sleeve of the cable, nor the inner insulation of the actual
wire strands inside the cable. This means that the insulation
of the conductors needs to be removed, which is a delicate
and time consuming process. Depending of the mechanical
tolerances alligator clips do not offer a reliable connection,
the mechanical size of alligator clips poses constraints on the
length of wire that can remain twisted, possibly harming the
signal integrity of both the intercepted connection and the
intercepted traffic. To make quick and reliable connections
to the UTP cable leading to the computer system under
investigation, a more suitable solution was sought for.

A. Insulation-Displacement Connectors

Insulation-displacement connectors (IDC)are a common
type of connector in electronics. These are mostly used on
so-called ribbon cables, also called IDC-cables, for the use
with IDC technology connectors. More details on IDC can be
found in [17].

B. TAP Creation Using IDCs

When the outer insulating sleeve of a UTP cable is cut
lengthwise, the internal wire-pairs can be exposed. Using a
suitable tool, in this research a pair of medical artery clamps
was used with good results, the wire-pairs in an UTP cable can
be kept parallel to each other over a length that is sufficient
for crimping an IDC connector over these wire-pairs. The
Attached IDC connector now acts as a test access port (TAP),
as described in [3].

C. TAP Attachment to Analysis Device

An Ethernet cable, of which only the receive wire-pair is
wired to the RJ45 connector can now be securely connected
to the IDC connector by means of a mating connector. In
this research a female IDC crimp connector with was used
to attach to the UTP cable and a twisted wire pair with an
attached two pin header is connected to the IDC connector.
The wire pair that is spliced to the connection this way is
fed to the receive side of an Ethernet port, this way the TAP
can be used for unidirectional interception of Ethernet traffic.
Using two Ethernet interfaces for interception would allow for
bidirectional interception of the traffic, this is not necessary
for the purpose of identification of servers. For the purpose of
identification of a host, the source addresses it uses upstream
are sufficient.

VI. EXPERIMENTATION AND RESULTS

In this section, numerous experiments and results with the
proposed device are presented.

A. Effects on Transmitted Traffic

Experimentation was conducted to study the effects of
the interaction of the TAP with the traffic flowing over the
observed connection. An Ethernet link using 100 Mbit/s full-
duplex was established between two hosts running the Mac OS
operating system. Using the ping utility, each 10ms a 1,500
byte sized ICMP echo packet was sent from one host to the
other. The standard reporting of the ping utility was used to
verify successful transmission and reception of all data over
the Ethernet connection.

To establish the norm, two runs of 10,000 packets were
sent, and the returned ICMP echo replies were counted. This
test was repeated with the TAP attached to wire pair 2 and
wire pair 3 to measure if any significant influence on the
connection could be observed. The results of this experiment
are summarised in Table I.

The results of these experiments show that in the normal
for 20,000 ICMP echo requests sent, 2 ICMP echo response
packets were not received. With the TAP connected to wire
pair 2, for all 20,000 ICMP echo requests sent, ICMP echo
responses were received. With the TAP connected to wire
pair 3, for 20,000 ICMP echo requests sent 1 ICMP echo
packet was not received. From this, one can conclude that
with the TAP connected, the reliability of the connection is
not impaired in respect to the normal.



TABLE I
EFFECTS OF THE TAP ON ICMP TRAFFIC

Configuration Run # Packets Sent Packets Received

TAP not connected 1
2

10,000
10,000

10,000
9,998

TAP connect to wire pair 2 1
2

10,000
10,000

10,000
10,000

TAP connected to wire pair 3 1
2

10,000
10,000

9,999
10,000

B. Effect of TAP Insertion

The previous experiment was conducted with a static con-
nection of the tap from the start of each run of the exper-
iment. As the insertion of the receive-only cable form the
Raspberry Pi to the TAP may introduce errors that may not
arise with a static connection to the TAP, an experiment
was conducted using the same experimental setup as used
in previous experiment. Instead of using a static connection
to the TAP during the run of the experiment, one run was
conducted in which during the length of the run the tap was
manually switched 102 times in 108 seconds from wire pair 2
to wire pair 3 of the connection where the TAP is connected
to. In this run, for 10,000 ICMP echo requests, 9,997 ICMP
echo responses were received, the three lost responses do not
deviate strongly from the normal that was established in the
previous experiment. From this, it can be concluded that the
insertion of the receive-only network cable from the Raspberry
Pi to the IDC connector used for the TAP does not lead to a
significant impairment of the reliably of data transmission over
the intercepted Ethernet connection.

C. Effect on Signal Integrity

An important concern with the attachment of the wiretap
to the TAP created using the method described in Section V
is the impact of this TAP has on signal integrity. During the
experiment described in Section VI-A no significant deviations
in reliability of data transfer compared to the norm was
found. This, however, does not guarantee correct operation
in all environments. Therefore experiments were conducted to
measure the behaviour of the proposed method to create a TAP
on an active Ethernet connection.

1) Signal Attenuation due to the Introduction of a TAP:
Because the network interface of the Raspberry Pi may load
the signal of the connection to which the TAP is created,
attenuation may occur. To measure the level of attenuation
of the signal, a cable with at TAP as described in Section V
was connected between a network interface and an unmanaged
Ethernet switch using 100 Mbit/sec Ethernet. The average
peak-to-peak signal on the cable was measured using an
oscilloscope. An average peak-to-peak voltage level of about
1.42 V was measured. After measuring the average voltage
in the normal situation, a Raspberry Pi was connected to the
TAP port and the average peak to peak voltage was measured
again, resulting in an average peak to peak voltage of 1.20 V,
a difference of 220 mV. Expressed in decibels, this is equal

to 20×log(1.20 V/1.42 V) (∼ -1.46dB) attenuation with a
Raspberry Pi attached to the TAP.

2) Allowed Attenuation: The Ethernet IEEE standard
802.3-2012 [18] defines the allowable insertion loss for the
100BASE-T media type as: “The insertion loss of a link
segment shall be no more than 14.6 dB at all frequencies
between 2 and 16 MHz. This consists of the attenuation of the
balanced cabling pairs, connector losses, and reflection losses
due to impedance mismatches between the various components
of the link segment”. UTP cables are categorised in quality
grades, most patch cables used today are category 5 or higher,
and for telephony mostly category 3 cabling is used. The
Commercial Building Telecommunications Cabling Standard
TIA/EIA-568-B.2, Section 4 defines the maximum allowed
insertion loss per 100 meter of cable. For category 3 cable,
this figure is 13.1dB/100m at 16 MHz. For category 5e cable
the maximal allowed insertion loss is 8.2dB/100m. The added
attenuation by the TAP may therefore cause problems for a
category 3 cable of 100-meter length, although it is unlikely
to encounter cables of this length and category in a data centre.
So, for a category 5 cable of up to 100 meters in length the
TAP will not likely cause any degradation of the signal due
to attenuation of the signal on the intercepted network con-
nection. In [19] measurements of various samples or category
5e UTP cables were taken, the author concludes that many
category 5e cables perform better than the TIA/EIA-568-B.2
standard requires. The author also concludes, however, that
most significant signal degradation is due to poor connectors,
this factor is not calculated in the insertion loss calculations
above.

From the above follows that the introduction of the TAP
to an active Ethernet cable does not attenuate the signal on
the existing cable significantly, the overall effect may depend
on the quality of the cables and connectors used for the
intercepted cable.

3) Reflections and Other Signal Distortion: Above, the
attenuation that the introduction of a TAP to an active Ethernet
imposes on the signal was discussed. Attenuation is not the
only effect the TAP may have on the integrity of the trans-
mitted signals. Reflections due to mismatches in impedance
are another effect that may cause problems to the signal
integrity of the link the TAP is introduced to. An experiment
was conducted to find any reflections that may distort data
transmitted over the cable the TAP is introduced to. In this
experiment, one wire pair of an UTP cable was terminated
in a 100Ω resistor at the far end, at the near end, the cable
was connected to a square wave signal generator and an
oscilloscope. The sharp rising edge of the square wave is
used to measure transmission characteristics of the cable; this
method is known as time-domain reflectometry.

A measurement was made with the TAP attached to the
cable and a Raspberry Pi attached to the TAP, the result of this
measurement is depicted in Figure 6 From this picture follows
that no new reflections are introduced and no degradation to
the signal is introduced other than the overall attenuation of
the signal. This experiment shows that the TAP and attached



Fig. 6. Oscilloscope Output Using a 150cm cable with the TAP Attached

Raspberry Pi do not introduce significant distortion to the
signals present on the cable that TAP is attached to.

VII. CONCLUSION

From investigations conducted by NHTCU, demand
emerged for a solution to the problem of identifying computer
systems in a triage setting at data centres. In this paper, a
device is presented that utilises passive interception of Ethernet
network traffic to solve this problem. Prior work in the area
was considered too invasive, i.e., where devices were placed
in line with the connection that was to be intercepted. In
this paper, it has been demonstrated that placing devices in
line with the observed computer system’s connection has the
drawback that properties of the connection may change. A
change in the connections properties may alert a suspect in
the investigation. The passive method proposed in this method
was evaluated for its impact to the reliability of the existing
connection with good results.

A. Future Work

Future work is planned on addressing the problem with
interception of Gigabit Ethernet. The electrical characteristics
of Gigabit Ethernet seem to suggest that a solution would
require a device placed in line. Experiments with passive
devices that may lead to methods of passive interception of
Gigabit Ethernet links have left open for future work. The
option to import case data from an USB memory device is
desirable when plug-in modules require more complex data.
The currently developed plug-in modules only require the
input of data that is low in complexity and has a regular format
that allows for fast and easy entry of this data using the two
button user interface of the device.
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