
An Evaluation of AI-Based Network Intrusion
Detection in Resource-Constrained Environments

Syed Rizvi∗, Mark Scanlon†, Jimmy McGibney∗, John Sheppard∗
∗South East Technological University, Waterford, Ireland

Syed.Rizvi@postgrad.wit.ie, {Jimmy.McGibney, John.Sheppard}@setu.ie
†School of Computer Science, University College Dublin, Ireland

mark.scanlon@ucd.ie

Abstract—Internet of Things (IoT) and edge computing devices
have become integral to corporate and industrial systems. These
devices are prime targets for attackers due to their constant
availability and potential access to sensitive data. Handling
substantial data quantities, these devices pose challenges in
identifying relevant forensic evidence and investigating abnor-
mal activities. Thus, accurate network intrusion detection is
crucial in these resource-constrained environments. In addition,
robust IoT forensic readiness strategies are vital for effective
investigation. Unlike traditional computer forensic readiness,
these strategies adapt to heterogeneous architectures. This paper
evaluates an approach that directly trains and deploys AI models
on resource-constrained devices, securing networks and catego-
rizing significant traffic for later investigation. The approach
identifies and records potential malicious attacks in real-time
with minimal overhead, suitable for constrained environments.
The experimentation employed the IoT-23 dataset. The outcome
of the evaluation revealed that each of the included algorithms
achieved a classification accuracy of over 99% on a representative
resource-constrained device.

Index Terms—Network Intrusion Detection Systems, Resource
Constrained Environments, Internet of Things, Artificial Intelli-
gence

I. INTRODUCTION

The integration of IoT devices and Edge computing
has transformed communication among smart devices, span-
ning applications from autonomous vehicles to medical im-
plants [1]. These resource-constrained environments (RCEs)
establish direct or internet-based API-driven connections, cre-
ating a network of diverse edge and IoT devices. Robust cloud
servers manage these devices, enhancing the capabilities of
low-powered gadgets. However, the heterogeneity of these de-
vices introduces challenges to conventional computer security.

Modern network investigations handle large data vol-
umes [2]. With the growth of affordable, lightweight devices,
this network traffic data influx is expected to continuously
increase – further compounding the challenges to store and
index this data [3]. Cyberattacks take various forms, targeting
abnormal assets and impacting individual or multiple devices
serving as platforms for these attacks [4]. Securing edge de-
vices and establishing intrusion-resistant networks are crucial
to maintaining data integrity, streamlining digital evidence
collection, and reducing investigative costs.

The rise of IoT presents challenges in terms of bandwidth
and service provision due to high device-generated traffic.

Solely relying on cloud computing for IoT applications with
time-sensitive requirements is problematic [5]. A shift to dis-
tributed edge computing is occurring, where edge paradigms
replace centralized models in IoT architectures. These frame-
works use distributed edge resources to provide timely and
context-aware IoT services. Architectures combining fog and
edge computing bridge the cloud-IoT gap [6]. Security is
pivotal for these often vulnerable, lightweight devices.

Deep Learning (DL) effectively detects malicious activities
and aids in network forensics [7]. However, deploying DL
models on RCEs poses computational and storage challenges.
This study introduces a resource-constrained network forensic
approach, extending DL capabilities to RCE devices. This
approach minimizes computational and storage requirements
while ensuring accurate identification of network attacks. By
adopting this approach, IoT/edge devices enhance network
forensic analysis, bolstering overall edge system security.

This paper conducts a comprehensive study on nine AI-
driven intrusion detection models for multi-classification tasks.
The models are evaluated using the IoT-23 dataset [8]. This
research introduces lightweight methodologies for Network
Intrusion Detection Systems (NIDSs) in RCEs, effectively
classifying various attack types. The proposed approach de-
tects attacks with limited training data, using less complex
model architectures. The resulting models demonstrate notable
improvements, reducing false positives and false negatives,
thus enhancing accuracy in identifying network attacks.

II. RELATED WORK

DL’s scalability and automated feature creation capabilities
make it a valuable asset in NIDSs and forensic readiness [9].
By leveraging DL, accurate representations can be extracted
from extensive network data, enabling effective analysis of
traffic patterns. These advancements enhance security mea-
sures and address the unique requirements of systems with
resource limitations.

The objective of IoT forensic readiness is to establish proto-
cols for identifying, acquiring, and analyzing IoT data within
an organization. This includes identifying critical data sources
and developing a strategic plan for managing forensic data
during incident response. Kebande et al. [10] propose a proac-
tive framework for meeting IoT requirements, implementing
ISO/IEC 2704 standards [11]. The framework addresses IoT



forensic readiness in planning and implementation, incorpo-
rating organizational readiness and IoT security processes. By
considering complexities and policy developments, it fills the
void with a comprehensive IoT forensic readiness framework.
However, it lacks low-level features for environment-specific
customization without altering processes.

In Intrusion Detection Systems (IDSs) for RCEs, various
approaches have been proposed. One is the “Edge-of-Things”
(EoT) framework by Almogren [12], using a deep belief
network to detect intrusive EoT events. However, this model
requires significant computational resources. Idrissi et al. [13]
implemented a DL-based host IDS using the MQTTIOT-
IDS2020 dataset [14]. The dataset includes four attack types:
Aggressive scan, UDP scan, Sparta SSH brute-force, and
MQTT brute-force. Their proposed model, a Convolutional
Neural Network (CNN), was tested on Raspberry Pi, Arduino,
and ESPWROOM32 using TensorFlow Lite [15]. No univer-
sally optimal model performed best for all RCEs.

Djigal et al. [16] conducted a survey on the application
of ML and DL for resource allocation in edge computing.
Meanwhile, Saha et al. [17] delved into the intricate domain
of lightweight ML algorithms, exploring TinnyML and ultra-
lightweight counterparts like SqueezeNet and EfficientDET,
specifically tailored for microcontroller-class hardware.

Another notable contribution emerged from the work of Kol-
cun et al. [18], who tackled the challenge of traffic classifica-
tion in IoT. In their study, the authors harnessed the power of
feature vectors as inputs for CNN. Among the proposed mod-
els, a standout candidate is the 4-Layer CDM. This model’s
uniqueness lies in its input structure, a vector derived from the
authors’ proprietary dataset. Comprising 19 carefully chosen
features, including source and destination ports, received byte
count, mean and variance of packet sizes, and stream duration,
the model demonstrates exceptional promise in addressing the
intricacies of traffic classification.

III. METHODOLOGY

The research presented as part of this paper employed the
Design Science Research (DSR) methodology [19], which in-
volves creating practical solutions to address real-world prob-
lems while contributing to scientific knowledge. DSR focuses
on developing artifacts that serve human purposes, solving
domain-specific issues, and assessing their value or utility.
Consequently, extensive experiments were conducted, focusing
on ML and DL techniques within RCEs. The objective was
to explore various model architectures and hyperparameters to
identify the optimal configurations that achieve high perfor-
mance while minimizing computational power requirements.

A. Dataset Description

1) IoT-23: The IoT-23 dataset [8] is a recent resource for
analyzing IoT traffic. It includes data from hardware IoT
devices like Philips HUE, Amazon Echo, and Somfy Smart
Door Lock. The dataset consists of 20 instances capturing
malware executions on IoT devices and three instances of

benign traffic. It covers various attack scenarios, including
botnets like Mirai and Torii.

In addition to the packet capture files, the dataset provides
Zeek/Bro IDS-generated netflows with contextual details. It
includes labels describing flow nature, threat level, or in-
volvement in malicious behaviors.These labels were generated
during malware analysis in the Stratosphere Laboratory [20].
The IoT-23 dataset is valuable for researchers in IoT security
and anomaly detection. It offers real-world IoT traffic for
studying and understanding IoT network behavior.

IV. EXPERIMENTS

A. Simulation Environments

1) Resource Slack Environment: The models were trained
and tested in a Slack environment on a Windows OS, fea-
turing an Intel Core i7-1165G7 processor and 8GB RAM.
Development employed Python 3.9.7, alongside Keras,
TensorFlow, and Scikit-learn for modeling, while
data preprocessing utilized Pandas and NumPy. Data pre-
processing occurred within this resource-slack environment.

2) Resource Constrained Environment: The Raspberry Pi
Zero is a prevalent choice in RCE, enabling innovative solu-
tions in applications like those explored by Gómez-Carmona
et al. [21, 22]. To mimic this environment for the research,
a virtual machine with Linux OS, a 1GHz single-core CPU,
and 512MB RAM was used to match Raspberry Pi Zero spec-
ifications. Model development utilized Python 3.9.7, Keras,
TensorFlow, and Scikit-learn.

B. Exploratory Data Analysis

Exploratory Data Analysis (EDA) is pivotal for AI model
optimization. This study conducted EDA on a subset of the
IoT-23 dataset.

1) EDA on IoT-23: The IoT-23 dataset consisted of 20 Zeek
log files, each approximately 8GB in size. The Zat library was
used to convert these logs into data frames. Statistical analysis
helped identify and remove irrelevant and redundant features.

Addressing imbalanced datasets is crucial in ML, especially
when one class greatly outweighs others, leading to biased
model performance. To combat this, under-sampling tech-
niques were applied to balance class distribution, improving
performance on the minority class. However, care was taken
to prevent information loss.

For streamlined analysis, the “label” and “detailed label”
features were merged post under-sampling, consolidating sim-
ilar attack types. This enhanced workflow efficiency and
simplicity. This merger streamlined data analysis, reducing re-
dundancy and complexity. It enabled a concise representation
of data and focused analysis on unified attack types.

Various techniques handled data quality concerns like miss-
ing and duplicate values. Normalization ensured consistent
feature scales, preventing dominance by any single feature.

Class imbalance led to removing classes 3, 4, and 6,
resulting in a balanced dataset of 63,000 instances (9,000
per class). An 80:20 split accommodated model training and



evaluation, upholding best practices for comprehensive model
assessment and robust training.

TABLE I: Class Categories of Malware in the IoT-23 Dataset

Class Categories of Malware Total samples

0 Benign 30,860,691
1 C&C, C&C-FileDownload 22,048
2 C&C-HeartBeat, C&C-HeartBeat-Attack,

C&C-HeartBeat-FileDownload
34,518

3 C&C-Mirai 2
4 C&C-Torii 30
5 DDoS 19,538,713
6 FileDownload 18
7 Okiru, Okiru Attack 609,907,11
8 PartOfAHorizonalPortScan,

PartOfAHorizonalPortScan-Attack,
C&CPartOfAHorizonalPortScan

213,853,817

9 Attack 9,398

C. Convolutional Neural Network
The model evaluated is a 1D-CNN architecture for feature

extraction and classification. It begins with a convolutional
layer for data insights featuring 32 filters to capture local
patterns. The output tensor shape is (None, 10, 32), indicating
variable batch size, sequence length of 10, and 32 filters.

A subsequent max pooling layer reduces dimensions while
retaining vital features, leading to a tensor shape of (None, 5,
32). This enhances efficiency by preserving important details
and discarding less relevant information.

Another convolutional layer, employing 64 filters, further
enhances feature extraction for complex patterns. This reduces
sequence length to 3 and yields a tensor shape of (None, 3, 64).
Increased filters empower the model to learn intricate patterns,
thus improving its classification capabilities.

Succeeding layers (flatten, dense with sigmoid activation,
and output dense layer with softmax activation) proficiently
classify the features into seven classes. These layers process
and transform data, facilitating accurate predictions and effec-
tive classification of new instances.

TABLE II: Convolutional Neural Network Model Summary

Layer Output Shape Parameter #
conv1d (Conv1D) (None, 10, 32) 128
max pooling1d (MaxPooling1D) (None, 5, 32) 0
conv1d 1(Conv1D) (None, 3, 64) 6208
flatten (Flatten) (None, 192) 0
dense (Dense) (None, 128) 24704
dense 1 (Dense) (None, 7) 1290
Total Parameters: 32,330
Trainable Parameters: 32,330
Non-Trainable Parameters: 0

D. Dilated Convolutional Neural Network
One lightweight variant of a CNN is the 1D Dilated

Convolutional Neural Network (1D-DCNN), which is notably

more efficient compared to standard CNNs [23, 24]. This
evaluation presents a sequential 1D-DCNN model architecture,
as outlined in Table II. This architecture adeptly extracts fea-
tures and conducts data classification in diverse domains. The
performance of the model on complex real-world problems
benefits significantly from hyperparameter optimization.

The model’s foundation is a convolutional layer employing
32 filters, a kernel size of 1, and a dilation rate of 2.
This captures local patterns and important data features. The
dilation rate expands the receptive field, enabling the extraction
of broader, contextual information. Subsequent layers build
upon the learned representations established by this layer.

The next layer has 64 filters, a kernel size of 1, and a
dilation rate of 8. This layer enhances the model’s capacity
to learn higher-level representations and complex features.
The larger dilation rate enables the capture of long-range
dependencies and informative patterns across a wider context.
Together, these two convolutional layers constitute a potent
feature extraction module.

For the ultimate classification task, a flattened layer reshapes
the output into a one-dimensional tensor, ensuring smooth
integration with ensuing dense layers. The final dense layer
employs softmax activation, generating the model’s output
for multi-class predictions. Training employs the categorical
cross-entropy loss function and the Adam optimizer, further
heightening classification accuracy.

TABLE III: 1D Dilated Convolutional Neural Network Model
Summary

Layer Output Shape Parameter #
conv1d (Conv1D) (None, 12, 32) 64
conv1d 1 (Conv1D) (None, 12, 64) 2,112
flatten (Flatten) (None, 768) 0
dense (Dense) (None, 7) 7,690
Total Parameters: 9,866
Trainable Parameters: 9,866
Non-Trainable Parameters: 0

E. Recurrent Neural Network

1) Long Short-Term Memory: Backpropagation through
time in Recurrent Neural Networks (RNNs) is computationally
intensive and slow [25]. This challenge arises from propagat-
ing error signals across extended time intervals, where signals
can either exponentially increase or diminish. The introduction
of Long Short-Term Memory (LSTM) architecture, a special-
ized RNN variant, effectively addresses this issue. LSTMs can
manage time lags exceeding 1,000 discrete steps, rendering
them more efficient for training RNNs. The model structure
in Table IV comprises an LSTM layer and a subsequent dense
layer, designed to capture and learn temporal dependencies.

The LSTM layer tackles the vanishing gradient problem
prevalent in conventional RNNs. Outputting a shape of (None,
64) and featuring 19,712 trainable parameters, LSTMs utilize
memory cells and gating mechanisms to selectively retain or
discard information across multiple time steps. This capability



facilitates capturing prolonged dependencies and sustaining
contextual memory. Consequently, LSTMs excel in scenarios
with temporal gaps, making them favored in Natural Lan-
guage Processing (NLP), speech recognition, and time series
forecasting due to their proficiency in deciphering complex
temporal patterns.

Following the LSTM layer, a dense layer significantly
contributes to the model’s performance. With an output shape
of (None, 10) and 650 parameters, this layer introduces non-
linear transformations through activation functions, such as
softmax. The dense layer abstracts learned features into
higher-level representations, converting information into class
probabilities. This mechanism enables predictions across var-
ious classes, supporting decision-making and interpretation.
The simplicity and interpretability of the dense layer provide
valuable insights into the model’s reasoning process and
facilitate the understanding of learned representations.

2) Gated Recurrent Unit: The GRU model is a versatile
choice for sequential data analysis, offering unique benefits
across applications. The core GRU layer, with (None, 64)
output shape and 14,976 parameters, excels in capturing long-
term dependencies. It surpasses traditional RNNs by using
gating mechanisms to regulate information flow, adaptively
retaining or discarding information from prior steps. The
GRU’s efficiency in learning temporal dependencies makes it
valuable for various tasks like NLP, sentiment analysis, and
music generation, handling sequences with diverse lengths and
complex patterns.

Following the GRU layer, a dense layer improves model
performance. With (None, 10) output shape and 650 parame-
ters, it introduces non-linear transformations using activation
functions like softmax. This layer maps GRU-learned fea-
tures to class probabilities, aiding predictions. Its compact size
ensures computational efficiency and scalability for real-time
applications and large-scale datasets.

Table V summarizes the model architecture, including layer
details, output shapes, and trainable parameters. All parameters
are adjustable during training for task optimization.

TABLE IV: Long Short Term Memory Model Summary

Layer Output Shape Parameter #
lstm (LSTM) (None, 64) 19,712
dense (Dense) (None, 10) 650
Total Parameters: 20,362
Trainable Parameters: 20,362
Non-Trainable Parameters: 0

TABLE V: Gated Recurrent Unit Model Summary

Layer Output Shape Parameter #
gru (GRU) (None, 64) 14,976
dense 1 (Dense) (None, 10) 650
Total Parameters: 15,626
Trainable Parameters: 15,626
Non-Trainable Parameters: 0

F. Machine Learning Algorithms

For a comprehensive ML model selection, a meticulous
experimental methodology was adopted. This involved train-
ing and evaluating widely-used algorithms like KNN, RF,
DT, XGBoost, and NB. The GridSearchCV function from
Scikit-learn library was employed for performance op-
timization. It exhaustively searched hyperparameters, aiming
to identify configurations yielding high accuracy and gen-
eralization. The parameter search process entailed defining
relevant hyperparameter values for each model. For instance,
RF considered estimators, max features per split, and splitting
criterion.

Post hyperparameter optimization, models were trained with
selected settings. This phase facilitated learning data patterns,
enabling accurate predictions on new instances.

V. RESULTS

The experimental evaluation of both DL and ML models ex-
hibited promising outcomes in terms of accuracy, CPU usage,
and execution time on IoT-23 datasets. CPU usage assessment
leveraged the Psutil library, which offers insights into
processes, system utilization (CPU, memory, disks, network),
aiding monitoring, profiling, and resource allocation. Psutil
is versatile, compatible with various operating systems and
architectures [26].

Key evaluation metrics encompassed accuracy, precision,
recall, and F1 score, gauging model classification performance.
These metrics collectively appraised the model’s capacity
to identify accurately, minimize misclassifications, capture
positive instances, and maintain balanced precision and recall.

A. Result Analysis

In the evaluation phase, DL models were assessed by
tracking accuracy and loss on training and validation sets at
each epoch. This facilitated anomaly detection and accurate
validation data identification. The loss function computed
gradients, essential for updating biases and weights in neural
networks. The Adam optimizer and sparse categorically cross-
entropy loss function were employed.

To counter overfitting, an early stopping technique halted
training when validation loss ceased to decrease after a set
number of iterations. DL models underwent 15 epochs with a
batch size of 32. Figure 1 depicts loss and accuracy’s inverse
relationship. Training set accuracy approximated 99%, while
validation set accuracy slightly exceeded at 99.2%. Further
epochs did not notably elevate accuracy due to potential
overfitting.

Confusion matrices (Figure 4) offered classification insights
on IoT-23. ML algorithms (Table VI) showed varying per-
formance. DT and RF scored 99.99% accuracy, XGBoost
reached 99.8%. DL models (1D-CNN, 1D-DCNN, LSTM,
GRU) achieved accuracy from 98.5% to 99.2%, displaying
competence in intricate pattern recognition.

CPU usage differed among models. RF consumed 40%,
DT and NB used 8.26% and 11.05% respectively. XGBoost



Fig. 1: DL Models Performance on the Training Dataset of IoT-23

TABLE VI: Evaluation of AI Models on the IoT-23 Dataset in the Slack and Resource-Constrained Environments

SNo Model PC Training time (s) PC CPU Usage (%) PI Training time (s) PI CPU Usage (%) Accuracy (%) Precision Recall F1-Score

1 DT 0.046 1.13 1.332 8.26 99.99 0.999 0.999 0.999
2 RF 1.979 6.82 6.834 40.01 99.99 0.999 0.999 0.999
3 KNN 0.078 0.93 0.371 12.45 91.40 0.918 0.914 0.914
4 NB 0.001 0.61 0.020 11.05 54.10 0.595 0.541 0.509
5 XGBoost 3.19 48.21 587.52 74.34 99.98 0.998 0.998 0.998
6 1D-CNN 30.065 28.37 313.11 20.10 99.20 0.992 0.992 0.992
7 1D-DCNN 31.862 26.12 330.71 18.13 98.70 0.987 0.987 0.987
8 LSTM 35.555 31.04 449.36 28.07 98.65 0.98.6 0.98.5 0.98.6
9 GRU 36.395 23.85 472.56 22.11 98.55 0.985 0.985 0.985

utilized 57.8%. DL models (1D-CNN, 1D-DCNN, LSTM,
GRU) employed 20% to 28%.

LSTM required the longest training (approximately 449
seconds) in the constrained environment. DT, RF, NB, and
KNN trained faster than XGBoost and DL models.

TABLE VII: Accuracy Comparison of the DT and RF Models
used in this Work against Existing Approaches

Reference Dataset Classification Accuracy (%)

Hegde et al. [27] IoT-23 Multi-class 99.90

ElKashlan et al. [28] IoT-23 Multi-class 99.20

Vitorino et al. [29] IoT-23 Multi-class 99.97

Kanimozhi and Jacob [30] IoT-23 Multi-class 99.96

Wei et al. [31] IoT-23 Multi-class 99.92

Evaluated DT and RF Models IoT-23 Multi-class 99.99

Figure 3 and Figure 2 offer a comprehensive overview of
model performance, including accuracy, training time, and
CPU usage, in both slack and RCEs. These figures display per-
formance discrepancies and trade-offs between accuracy and

resource consumption. For further accuracy context, Table VII
compares the proposed NIDS with other existing works.

The study reveals distinct features and trade-offs between
ML and DL models. DT and RF excel in accuracy, while DL
models achieve impressive rates above 99%, demanding more
computational resources.

Overall, the results demonstrate the resource-constrained
potential for DL and ML approaches to NIDSs, and highlight
the effectiveness of the proposed AI models in detecting
and categorizing network attacks. This facilitates the efficient
storage of pertinent network traffic for future analysis, i.e.,
benign packets can be discarded at the edge itself. These
findings have important implications for organizations seeking
to improve their cybersecurity posture and provide a valuable
contribution to the growing body of literature on intrusion
detection using ML and DL approaches.

VI. DISCUSSION

The integration of IoT and edge devices brings advantages
but also potential security vulnerabilities, necessitating NIDS
and forensics readiness for data protection and incident in-
vestigation [3]. A multiclassification NIDS improves network



Fig. 2: Comparison of Proposed AI Models in Terms
of Accuracy, Training Time, and CPU Usage on Slack
Environment

Fig. 3: Comparison of Proposed AI Models in Terms of
Accuracy, Training Time, and CPU Usage on Constrained
Environment

forensic readiness in resource-constrained settings, offering
evidence and insights into security incidents involving edge
devices. This approach enhances monitoring, detection, and
security of edge networks.

The benefits of a multiclass NIDS in resource-constrained
environments include:

• Evidence Collection: Gathers essential evidence while
optimizing resource use.

• Threat Identification: Classifies security threats, aiding
investigations.

• Real-Time Monitoring: Alerts to incidents in real time.
• Automated Analysis: Automates log and network data

analysis for insights.
• Efficient Investigations: Centralizes evidence collection

and analysis for quicker root cause identification.
Training lightweight DL models on Raspberry Pi Zero

demonstrates potential in enhancing RCE security and forensic
readiness. While direct training in RCEs faces limitations due
to computational and memory constraints, validation can be
done locally. Cloud infrastructure can be leveraged for training
the models, and these pre-trained models can be deployed on
edge devices – achieving the aforementioned benefits while
eliminating many limitations.

A. Limitations
The proposed approach also has a number of limitations:
• The suggested NIDS approaches only investigated a sin-

gle dataset, i.e., IoT-23. The performance of the proposed
models is worth investigating on other IoT datasets, such
as CICIoT2023 [32].

• The lower threshold of computational power needed
to successfully run the developed models on resource-
constrained physical devices has not yet been evaluated.

• The comparison of the execution of the proposed models
using TensorFlow, TensorFlow-light and TinyML has not
yet been evaluated.

• The assessment of power consumption on edge devices
during the execution of the proposed models has not
been thoroughly investigated. Understanding the power
requirements and evaluating the energy efficiency of the
models is crucial for resource-constrained environments.

VII. CONCLUSION

In response to security challenges in diverse IoT/edge
networks, this paper evaluates AI-based network intrusion
detection techniques in RCEs. It involves training lightweight
classification algorithms directly on these devices, enhancing
security and enabling real-time attack detection with minimal
computational load. The evaluation, conducted on a low-
powered device, showcased accuracy rates of over 99% on
IoT-23 dataset across multiple attack types. This approach
not only benefits academia and industry but also highlights
the significance of considering factors like training time and
CPU usage when selecting intrusion detection methods. By
empowering edge devices with security tasks, this approach
transforms traditional centralized security models and ensures
swift responses to threats through edge-based security mea-
sures.

REFERENCES

[1] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac,
“Internet of things: Vision, applications and research
challenges,” Ad Hoc Networks, vol. 10, no. 7, pp. 1497–
1516, 2012.

[2] E. van de Wiel, M. Scanlon, and N.-A. Le-Khac, “En-
abling Non-Expert Analysis of Large Volumes of Inter-
cepted Network Traffic,” in Advances in Digital Forensics
XIV, G. Peterson and S. Shenoi, Eds. Cham: Springer
International Publishing, 2018, pp. 183–197.

[3] K. Friday, E. Bou-Harb, J. Crichigno, M. Scanlon, and
N. Beebe, “Offloading network forensic analytics to
programmable data plane switches,” in Innovations in
Digital Forensics. World Scientific, 2023, pp. 139–190.

[4] S. Sachintha, N.-A. Le-Khac, M. Scanlon, and A. P.
Sayakkara, “Data exfiltration through electromagnetic
covert channel of wired industrial control systems,” Ap-
plied Sciences, vol. 13, no. 5, 2023.

[5] P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on fog
computing: architecture, key technologies, applications
and open issues,” Journal of Network and Computer
Applications, vol. 98, pp. 27–42, 2017.



(a) DT Confusion Matrix (b) RF Confusion Matrix (c) KNN Confusion Matrix

(d) NB Confusion Matrix (e) XGBoost Confusion Matrix (f) CNN Confusion Matrix

(g) 1D-DCNN Confusion Matrix (h) LSTM Confusion Matrix (i) GRU Confusion Matrix
Fig. 4: Confusion Matrix of Employed AI Models on IoT-23 Dataset

[6] J. Ren, D. Zhang, S. He, Y. Zhang, and T. Li, “A Survey
on End-Edge-Cloud Orchestrated Network Computing
Paradigms: Transparent Computing, Mobile Edge Com-
puting, Fog Computing, and Cloudlet,” ACM Computing
Surveys (CSUR), vol. 52, no. 6, pp. 1–36, 2019.

[7] S. Rizvi, M. Scanlon, J. McGibney, and J. Sheppard, “Ap-
plication of Artificial Intelligence to Network Forensics:
Survey, Challenges and Future Directions,” IEEE Access,
vol. 10, pp. 110 362–110 384, 2022.

[8] S. Garcia, A. Parmisano, and M. J. Erquiaga, “IoT-

23: A labeled dataset with malicious and benign IoT
network traffic,” Jan. 2020, More details available at
https://www.stratosphereips.org/datasets-iot23.

[9] X. Du, C. Hargreaves, J. Sheppard, F. Anda,
A. Sayakkara, N.-A. Le-Khac, and M. Scanlon,
“SoK: Exploring the State of the Art and the Future
Potential of Artificial Intelligence in Digital Forensic
Investigation,” in Proceedings of the 15th International
Conference on Availability, Reliability and Security, ser.
ARES ’20. New York, NY, USA: Association for



Computing Machinery, 2020.
[10] V. R. Kebande, P. P. Mudau, R. A. Ikuesan, H. Venter,

and K.-K. R. Choo, “Holistic digital forensic readiness
framework for IoT-enabled organizations,” Forensic Sci-
ence International: Reports, vol. 2, p. 100117, 2020.

[11] A. Valjarević, H. Venter, and R. Petrović, “ISO/IEC
27043:2015 - Role and application,” in 2016 24th
Telecommunications Forum (TELFOR). IEEE, 2016,
pp. 1–4.

[12] A. S. Almogren, “Intrusion detection in Edge-of-Things
computing,” Journal of Parallel and Distributed Comput-
ing, vol. 137, pp. 259–265, 2020.

[13] I. Idrissi, M. Mostafa Azizi, and O. Moussaoui,
“A Lightweight Optimized Deep Learning-based Host-
Intrusion Detection System Deployed on the Edge for
IoT,” International Journal of Computing and Digital
System, 2021.

[14] H. Hindy, C. Tachtatzis, R. Atkinson, E. Bayne,
and X. Bellekens, “MQTT-IoT-IDS2020: MQTT-IoT-
IDS2020 Internet of Things Intrusion Detection Dataset,”
IEEE Dataport, 2020.

[15] “TensorFlow Lite,” https://www.tensorflow.org/lite, 2017,
accessed on June 11, 2023.

[16] H. Djigal, J. Xu, L. Liu, and Y. Zhang, “Machine and
deep learning for resource allocation in multi-access edge
computing: A survey,” IEEE Communications Surveys &
Tutorials, 2022.

[17] S. S. Saha, S. S. Sandha, and M. Srivastava, “Machine
learning for microcontroller-class hardware-a review,”
IEEE Sensors Journal, 2022.

[18] R. Kolcun, D. A. Popescu, V. Safronov, P. Yadav, A. M.
Mandalari, Y. Xie, R. Mortier, and H. Haddadi, “The case
for retraining of ML models for IoT device identification
at the edge,” arXiv preprint arXiv:2011.08605, 2020.

[19] K. Peffers, M. Rothenberger, T. Tuunanen, and R. Vaezi,
“Design science research evaluation,” in Design Sci-
ence Research in Information Systems. Advances in
Theory and Practice, K. Peffers, M. Rothenberger, and
B. Kuechler, Eds. Springer, 2012, pp. 398–410.

[20] Stratosphere, “Stratosphere Laboratory
Datasets,” 2015, retrieved July 5, 2023, from
https://www.stratosphereips.org/datasets-overview.

[21] O. Gómez-Carmona, D. Casado-Mansilla, D. López-de
Ipiña, and J. Garcı́a-Zubia, “Simplicity is Best: Ad-
dressing the Computational Cost of Machine Learning
Classifiers in Constrained Edge Devices,” in Proceedings
of the 9th International Conference on the Internet of
Things, 2019, pp. 1–8.

[22] ——, “Optimizing Computational Resources for Edge
Intelligence Through Model Cascade Strategies,” IEEE
Internet of Things Journal, vol. 9, no. 10, pp. 7404–7417,
2021.

[23] S. Rizvi, M. Scanlon, J. McGibney, and J. Sheppard,
“Deep Learning Based Network Intrusion Detection Sys-
tem for Resource Constrained Environments,” in Pro-
ceedings of the 13th EAI International Conference on

Digital Forensics and Cyber Crime (ICDF2C). Springer,
2023, pp. 1–7.

[24] S. M. Rizvi, T. Syed, and J. Qureshi, “Real-time forecast-
ing of petrol retail using dilated causal CNNs,” Journal
of Ambient Intelligence and Humanized Computing, pp.
1–12, 2022.

[25] J. Kim, H. Kim et al., “An Effective Intrusion Detection
Classifier Using Long Short-Term Memory with Gradient
Descent Optimization,” in 2017 International Conference
on Platform Technology and Service (PlatCon). IEEE,
2017, pp. 1–6.

[26] Giampaolo Rodola’. (2023) Psutil. [Ac-
cessed: July 5, 2023]. [Online]. Available:
https://pypi.python.org/pypi/psutil/

[27] M. Hegde, G. Kepnang, M. Al Mazroei, J. S. Chavis,
and L. Watkins, “Identification of Botnet Activity in
IoT Network Traffic Using Machine Learning,” in 2020
International Conference on Intelligent Data Science
Technologies and Applications (IDSTA). IEEE, 2020,
pp. 21–27.

[28] M. ElKashlan, M. S. Elsayed, A. D. Jurcut, and M. Azer,
“A Machine Learning-Based Intrusion Detection System
for IoT Electric Vehicle Charging Stations (EVCSs),”
Electronics, vol. 12, no. 4, p. 1044, 2023.

[29] J. Vitorino, I. Praça, and E. Maia, “Towards adversarial
realism and robust learning for IoT intrusion detection
and classification,” Annals of Telecommunications, pp. 1–
12, 2023.

[30] V. Kanimozhi and T. P. Jacob, “The Top Ten Artificial
Intelligence-Deep Neural Networks for IoT Intrusion
Detection System,” Wireless Personal Communications,
vol. 129, no. 2, pp. 1451–1470, 2023.

[31] Y. Z. Wei, M. Md-Arshad, A. A. Samad, and N. Ithnin,
“Comparing Malware Attack Detection using Machine
Learning Techniques in IoT Network Traffic,” Interna-
tional Journal of Innovative Computing, vol. 13, no. 1,
pp. 21–27, 2023.

[32] E. C. P. Neto, S. Dadkhah, R. Ferreira, A. Zohourian,
R. Lu, and A. A. Ghorbani, “CICIoT2023: A Real-Time
Dataset and Benchmark for Large-Scale Attacks in IoT
Environment,” Sensors, vol. 23, no. 13, 2023.


