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Abstract
Industrial control systems (ICS) are the backbone of modern manu-
facturing facilities. Due to the distributed nature of ICS hardware in
their deployment environment, they are often networked through
Ethernet, opening up a window for network-based attacks. Pre-
ventive security measures, such as constant packet capture and
inspection, are impractical due to the computational overhead re-
quired. Therefore, computationally feasible trigger mechanisms are
needed that can activate security, as well as on-demand forensic
readiness features, in the infrastructure. This work proposes an
approach to monitor ICS network infrastructure using uninten-
tional electromagnetic (EM) radiation emitted by Ethernet network
cables during their regular operation. An empirical evaluation high-
lights that it is possible to detect various types of denial of service
(DoS) attacks through EM emission patterns of Ethernet cables
with considerable accuracy (HTTP Flood = 99.70%, TCP Flood =
73.22%, UDP Flood = 69.95%). Based on the experimental findings,
this work introduces an architecture for the ICS infrastructure to be
forensic-ready with minimal computational resources while being
independent and non-invasive to the infrastructure itself.

CCS Concepts
• Applied computing→ Surveillance mechanisms; Network
forensics; • Security and privacy→ Side-channel analysis and
countermeasures.
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1 Introduction
Modern industrial manufacturing facilities consist of highly com-
plicated machinery that is required to operate around the clock to
meet production targets. Industrial control systems (ICS) are the
backbone of these highly demanding environments, which monitor
and control factory equipment to keep them in order [10]. ICSs
are typically networked together over Ethernet [5]. The significant
role ICS plays attracts a host of security threats. Being network
devices with time-sensitive functionalities, most of such threats are
delivered through the network [3]. Network-based attacks to ICS
includes, denial of service (DoS) attacks, remote malware infections,
Man-in-the-Middle attacks (MitM), Spoofing, etc. These attacks can
originate from both external and internal sources. For example, a
DoS attack may originate from malware-infected network devices
from an industrial facility that targets a critical component of their
own ICS [11].

When security incidents related to ICS occur, they are subject to
forensic investigations [23]. The success of such a forensic analy-
sis depends on the availability of useful evidence retained in the
ICS and other network infrastructure. This had led to the need
to have a comprehensive network forensic readiness strategy in
place to ensure that pertinent evidence is available when needed,
but the balance of how much network traffic to store comes with
considerations on performance impacts and potentially excessive
data collection [17]. Various network and embedded system secu-
rity mechanisms can be employed in ICS to ensure their security.
Furthermore, their forensic readiness can be enabled through the
continuous capture and saving of network packets, the regular
preservation of the internal states of the ICS devices, and various
other methods. Enabling measures for ICS security and forensic
readiness have been shown to incur significant computational over-
head in terms of real-time processing of network traffic and storage
capacity [2]. Meanwhile, not having such measures in place can
derail an investigation due to the loss of valuable evidence during
the post-incident stage [1].

An ideal mechanism to ensure security and forensic readiness
of ICS infrastructure should consist of a variety of measures that
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should be enabled on demand whenever an indication of a threat/
incident is looming. This could be detected and triggered by an
independent monitoring mechanism that has minimal computa-
tional overheads. The necessity for such trigger mechanisms to be
independent from the ICS infrastructure itself is due to the possi-
bility that whatever threatening the ICS infrastructure can pose
the same threat to the security and forensic readiness triggering
mechanisms. In these circumstances, research is needed to discover
novel non-invasive, low-overhead, network-based threat detection
mechanisms.

This work explores the potential of using electromagnetic (EM)
radiation emitted by the ICS network infrastructure as a window
to detect network-based threats and act as a trigger mechanism to
activate the forensic readiness features of the ICS infrastructure.
Toward this goal, through empirical experimentation, appropri-
ate algorithms, tools, and techniques are developed and tested to
evaluate the effectiveness of such an approach.

This paper makes the following contributions:

• Introduces EM side-channel analysis (EM-SCA) as a non-
intrusive technique to detect network-based threats to ICS
infrastructure.
• Experimentally evaluates three light-weight machine learn-
ing algorithms to process EM radiation patterns caused by
malicious traffic.
• Presents a methodology to trigger security and forensic-
readiness features of ICS infrastructure with minimal over-
head.

The rest of this paper is organised as follows. Section 2 provides
a brief overview of the state-of-the-art in this problem domain.
Section 3 introduces the tools and techniques used to capture and
analyse radiation data originating fromEthernet network infrastruc-
ture. Based on these techniques, Section 4 experimentally evaluates
multiple machine learning algorithms to distinguish EM radiation
patterns caused by malicious network traffic. Section 5 proposes a
novel ICS security architecture based on the experimental findings.
Finally, Section 6 discusses the conclusion and future directions of
this work.

2 Related Work
Detecting network-based attacks through traffic pattern analysis is
a widely studied area [16]. Specific packet types like TCP or UDP
and the rate at which they flow can signal potential attacks. Neto
et al. [15] created a comprehensive dataset of network attacks com-
prising 33 types grouped into seven categories, including DDoS,
DoS, reconnaissance, web-based, brute force, spoofing, and Mirai
attacks. Their study shows that machine learning algorithms can
effectively distinguish between these attacks with high accuracy,
underscoring the importance of network traffic data in attack clas-
sification. Similarly, Dhanya et al. [4] designed machine learning
and deep learning models to detect intrusions and classify attacks,
using the UNSW-NB15 dataset [14], which features nine types of at-
tacks and 49 attributes derived from contemporary network traffic
patterns.

For Industrial Control Systems (ICS), detecting anomalous be-
haviour often relies on data from various sensors. Tang et al. [22]

Attacker's Computer

CAT6 Cable

Victim's Computer

H-Loop
Antenna Analyze EMR

Figure 1: Overview of the experimental hardware setup.

used neural graph networks for anomaly detection in ICS environ-
ments, while Kim et al. [12] explored several machine learning-
based techniques for the same purpose. By aggregating data from
multiple sensors, such as temperature or flow sensors, these ap-
proaches produce accurate and reliable results. However, central-
ising and processing large volumes of sensor data poses compu-
tational challenges, especially with the increased complexity of
modern machine learning models that require significant computa-
tional resources.

In recent years, information leakage via EM radiation from Eth-
ernet cables has become a significant concern in security and digital
forensics. Schulz et al. [21] explored the vulnerabilities of Ethernet
networks to -destructive wiretap attacks, demonstrating that attack-
ers using a USRP X300 device can intercept and decode sensitive
information, such as the preamble, start of frame delimiter (SFD)
and MAC address. Further expanding on this threat, Guri intro-
duced LANTENNA [8], an EM attack that enables data leakage from
air-gapped networks by turning Ethernet cables into unintended
transmitting antennas. This approach uses malware to manipulate
the EM emissions of a compromised workstation’s Ethernet cable,
allowing covert data transmission. Similarly, Sachintha et al. [18]
revealed a related EM-based attack targeting Industrial Control Sys-
tems (ICS), where compromised firmware in network controllers
can encode sensitive information within network packet patterns.
An attacker can capture the EM radiation from a few metres away
to extract the transmitted data.

These studies highlight the evolving risk landscape, where EM
radiation from wired connections becomes a potential conduit for
covert data exfiltration.

3 Radiation from Network Infrastructure
Although a wide array of frequency channels have the potential to
convey information about network traffic, typically only a small
subset of them prove to be truly valuable. Some channels may
contain redundant information, while others might not disclose
any information at all. Hence, the identification of these informative
frequency channels from the numerous available channels plays
a pivotal role in enhancing the efficiency of EM-SCA for digital
forensics [19, 20].
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3.1 Experimental Hardware Setup
The experimental hardware setup involves a computer, represent-
ing the attacker, connected to another computer, representing the
victim, via a Cat 6 unshielded twisted pair (UTP) Ethernet cable,
simulating the ICS wired network. EM radiation signals from this
setup are captured using a HackRF One [6] SDR device, paired with
a magnetic H-loop antenna, and connected to the investigator’s
computer. The collected EM radiation data are stored on the inves-
tigator’s computer for subsequent analysis. Figure 1 depicts the
arrangement of the target network and the attacker’s equipment
in the experimental scenario. For the experimental evaluation of
this phase, where the radiation emission frequency of the Ethernet
cable is identified, both the attacker’s computer connected to the
Cat 6 cable and the investigator’s computer connected to the SDR
hardware are set to be the same machine.

3.2 Experimental Software Setup
In order to conduct experiments, a program with 3 parallel threads
was executed on the attacker’s computer for data collection in an
annotated manner. The first thread is tasked with the transmission
of network traffic on-demand over the Ethernet cable. Simultane-
ously, the second and third threads undertake the responsibility of
capturing EM radiation and monitoring of network interfaces to
identify outbound packets, respectively. Using this software setup,
it is possible to transmit a specific network traffic pattern on the
cable while capturing the same network packets as PCAP files, as
well as emitted radiation data files, in a precisely timed manner.

3.3 Collection of Data
In accordance with insights from Guri’s work [8], it has been es-
tablished that Ethernet cables emit EM waves primarily in the fre-
quency bands of 125 MHz and its harmonics, with 250 MHz being
the most prominent among these harmonics. Consequently, in this
work, the experiments were tailored to scan the frequency range
spanning from 30 MHz to 260 MHz to pinpoint an information
leakage channel. It is important to note that the lower operating
frequency limit of HackRF is at 20 MHz, and approaching this limit
may introduce interference from internal circuitry. Therefore, it
was pragmatically decided to set 30 MHz as the lower limit of the
frequency range for this investigation to ensure a reliable data
collection.

The experimental software setup running on the hardware setup
operates seamlessly to autonomously gather samples across the
30–260 MHz frequency range. The packet sender produces heavy
TCP traffic using the Python Scapy library across the cable at each
frequency, while the setup records the EM data in the in-phase and
quadrature (IQ) data format and a corresponding PCAP file for each
packet pattern. For benign traffic at each frequency, a separate IQ
file and a PCAP file are recorded during the normal operation of
the devices.

3.4 Dissimilarity Analysis Algorithm
Analysing the dissimilarity between two traffic patterns is a crucial
component of the methodology, tasked with comparing each EM
trace of heavy traffic for a given signal frequency with benign traffic
EM trace of the same frequency. This comparison aims to identify

Algorithm 1 Dissimilarity Analysis Algorithm
Require: 𝐷𝑎𝑡𝑎1: Data set containing malicious pattern traces.

𝐷𝑎𝑡𝑎2: Data set containing benign pattern traces.
Ensure: Similarity measurement of patterns.
1: for freq← 30 to 260 MHz do
2: for 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑖 from 𝐷𝑎𝑡𝑎1 [𝑓 𝑟𝑒𝑞] and 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑗 from

𝐷𝑎𝑡𝑎2 [𝑓 𝑟𝑒𝑞] do
3: windowSize← minLength(𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑖 , 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑗 )
4: fft𝑖 ← getFFT(𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑖 , windowSize)
5: fft𝑗 ← getFFT(𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑗 , windowSize)
6: xCor← crossCorrelate(fft𝑖 , fft𝑗 )
7: nXCor← NormalizedCrossCorrelate(fft𝑖 , fft𝑗 )
8: results[ ]← (xCor, nXCor)
9: end for
10: end for
11: output← minimumSimilarity(results[ ])

the frequency at which the two network traffic patterns produce the
most distinct EM radiation patterns. The procedure to achieve this
task, as shown in Algorithm 1, begins by computing the Fast Fourier
Transform (FFT) of EM trace files and subsequently applying the
resulting FFT vectors to different similarity measurement functions,
namely, cross-correlation (xCor) and normalised cross-correlation
(nXCor). The calculated correlation values are then recorded in a
file for subsequent analysis. The algorithm considers the shortest
file length as the FFT window size, accounting for discrepancies in
array sizes between the two traces.

The results of the analysis were saved to a CSV file and later
plotted to visualise the variation of correlation values across dif-
ferent suspicious emission frequencies. As is evident in Figure 2,
the xCor parameter exhibits a lower correlation than nXCor, and
the most dissimilarity of two traffic patterns occurs at 240 MHz.
After manually validating these results, the emitting frequency for
the Cat 6 UTP cable was determined as 240 MHz. In Figure 3, the
radiation pattern for attack traffic is depicted in red, while benign
traffic is represented in green. A distinct contrast is evident between
the two packet patterns within these PSD graphs.

4 Detection of Network Attacks
Once the emission frequency of the EM radiation was identified for
the target Ethernet cable, the same hardware and software setup
was used to emulate realistic network-based attack scenarios. In
order to produce realistic attack traffic patterns on the Ethernet
cable, the CICIoT2023 dataset [15] network attack dataset was used.
The CICIoT2023 dataset is available in two different file formats:
PCAP [9] and CSV. The PCAP files comprise the original data
generated and collected in the CIC IoT network, which is the IoT
infrastructure that consists of 105 IoT devices. The PCAP files were
replayed by the software setup to recreate the exact attack scenar-
ios on the experimental hardware platform. The selected attacks
include DoS HTTP Flood, DoS TCP Flood, and DoS UDP Flood.
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Figure 2: Variation of correlation measurements across vari-
ous suspected emission frequencies.
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Figure 3: The power spectral density (PSD) variation of two
traffic patterns at 240 MHz emission frequency.

4.1 Data Preprocessing for Machine Learning
EM radiation samples were collected at a sampling rate of 20 MHz
with a target centre frequency of 240MHz. Each trace file, represent-
ing a time-domain signal, underwent Short-time Fourier Transfor-
mation (STFT) processing to generate frequency-domain windows.
In the case of MLP, RFCwith AdaBoost, and SVMmodels, these win-
dows were utilised as training instances, with labels corresponding
to the respective network traffic.

Subsequently, individual ML models were constructed to identify
malicious network activity using the resulting EM datasets for each
network attack. For this purpose, 10,000 samples were extracted
from each EM trace file representing a specific network attack,

the relevant network attack serving as the label. Certain hyperpa-
rameters were determined on the basis of the dimensions of the
EM datasets. During hyperparameter tuning, specific settings for
the STFT operation, such as the FFT window size and overlapping
samples, were adjusted accordingly.

4.2 Experiment 1: Impact of Probe Location
This experiment was conducted with the aim of discovering the
optimal probe placement for maximising signal reception and de-
tection. The entire data collection process was repeated 9 times,
covering 3 attacks at 3 different locations, to explore various probe
positions relative to the Ethernet cable. These locations were empir-
ically selected to gauge the sensitivity of the ML models to probe
placement.

Initially, the probe was positioned directly on top of the cable, in
direct contact with it, marking the initial phase of analysis. Given
its proximity to the primary emission source, it was expected to
generate the strongest EM field, facilitating optimal signal detection.
Subsequently, the probe was elevated 1cm and 10cm above the cable
to simulate scenarios where cables are installed under enclosures.
The results of these experiments are presented in table 1. For the
initial phase, where the H-Loop antenna (EM probe) was placed
directly in contact with the cable, the attacks are distinguishable
from normal traffic, with DoS HTTP Flood exhibiting the highest
detectability. Across all models, the highest accuracy for DoS HTTP
Flood is at 99.70%. Following this, DoS TCP Flood demonstrates the
highest accuracy at 73.22%, while DoS UDP Flood ranks last with
the highest accuracy at 69.95%.

When the EM probe is located 1cm away from the cable, the
overall accuracy in all traffic patterns falls below 60%, suggesting
a detectable difference between normal and malicious operations,
although less pronounced than before. Notably, the distinct gap ob-
served in accuracy between HTTP Flood and TCP and UDP Floods
diminishes. All accuracy values are within the same range, with
RFC consistently demonstrating the highest accuracy. In addition,
the precision and recall values align closely with the accuracy. Com-
pared to the experiment with the probe directly atop the cable, a
decrease is observed in all results, consistent with expectations
that the initial location would yield higher accuracy. Meanwhile,
when the EM probe is located 10cm away from the cable, the overall
accuracy is recorded below 59%. However, the effectiveness of detec-
tion between normal and malicious operations remains consistent
despite the change in probe location.

4.3 Experiment 2: Impact of Observation Time
When detecting network-based attacks, it is necessary to perform
the detection in a minimal amount of time. The longer it takes for
detection, the greater the possibility of an attack causing damage
to the ICS infrastructure. With this objective, this experiment aims
to determine the point in time during the attack at which it is most
detectable, whether it occurs at the beginning, middle, or end of
the observation time period. For this purpose, the dataset is divided
into segments that correspond to the start, middle, and end of the
attack sequence. Each segment is then individually analysed to
assess the ability to detect it using ML algorithms. By comparing
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Table 1: Performance comparison of DoS attack detection over probe placement.

Probe placement DoS HTTP flood DoS UDP flood DoS TCP flood
RFC MLP SVM RFC MLP SVM RFC MLP SVM

On the cable 99.70 99.55 99.68 69.95 57.70 66.25 73.22 67.25 66.42
1cm away 60.42 51.90 53.99 59.38 55.15 54.26 59.50 52.00 55.57
10cm away 59.92 52.30 54.70 60.05 54.80 54.51 58.83 51.40 54.21

Table 2: Performance comparison of DoS attack detection over time splits.

Time Split DoS HTTP flood DoS UDP flood DoS TCP flood
RFC MLP SVM RFC MLP SVM RFC MLP SVM

First third 99.58 99.40 99.73 70.43 54.20 58.95 67.70 51.65 61.60
Middle third 99.70 99.60 99.63 71.17 56.65 68.94 63.25 52.20 56.72
Last third 99.50 99.50 99.58 67.92 53.70 56.58 70.62 54.60 57.77
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Figure 4: DoS Attack Accuracies Across Different Setups

the accuracy of detection across these segments, insights can be
gained into the optimal timing to detect malicious network activity.

The analysis was performed using the dataset collected with the
probe in contact with the cable. The dataset was divided into three
subsets and the ML classification results were calculated for each
subset. New models were trained for each subset and the results
are illustrated in Table 2. In both HTTP and UDP DoS attacks, a
slight increase in accuracy could be observed in the middle third
time point compared to the other two time points. In contrast, TCP
DoS attack exhibits a slight decrease in accuracy at the middle third
time point compared to the other two time points.

4.4 Experiment 3: Impact of Sampling Rate
Capturing EM data with SDR devices requires extremely fast sam-
ple rates to capture a significant amount of information. Reducing
the sample rate below a certain threshold can adversely impact the
detection process. It is crucial to identify the minimum sample rate
that does not compromise the effectiveness of ML-based classifica-
tion for detecting malicious network activity. In this experiment,
due to the lower accuracy observed (>75%) with the other two

attacks, only the DoS HTTP Flood dataset collected with the probe
in contact with the cable was considered. The original trace file was
downsampled to 10 MHz and 4 MHz, resulting in two new trace
files. These downsampled files were then used as input data for the
ML models to perform the classification task.

The RFC with Adaboost and SVM models maintained close to
100% accuracy consistently at all sample rates, indicating strong
performance even at lower sample rates. However, the MLP model
experiences a noticeable drop in accuracy at 4 MHz, only reaching
around 80%, before achieving high accuracy at higher sample rates.
This suggests that while RFC and SVM are robust to lower sample
rates, MLP requires a higher sample rate for optimal accuracy.

4.5 Experiment 4: Impact of the Environment
This experiment was conducted to explore the effect of ambient EM
radiation in the environment on the accuracy of the classification.
For this purpose, EM traces were captured under three distinct
environmental conditions, i.e., Setup 1, 2 and 3, for each attack, and
the accuracy of classification was assessed. The probe remained
in contact with the cable during these conditions. Setup 1 corre-
sponds to the traces used in previous experimental efforts. Setup 2
comprises data collected using the same hardware setup in a dif-
ferent environment, while Setup 3 encompasses traces collected in
an alternate hardware configuration where the victim device was
altered. RFC with AdaBoost was used for this analysis, given its
superior accuracy in prior investigations. As illustrated in Figure 4,
it can be seen that the DoS HTTP flood maintains a consistent
accuracy across all setups. However, there is notable variability
in the accuracies of DoS UDP and DoS TCP flood across different
setups.

5 Monitoring Industrial Control Systems
The empirical findings in Section 4 point to the possibility of using
EM radiation patterns emerging fromnetwork infrastructure to look
out for network-based attacks. This section introduces a potential
design blueprint for an EM-SCA-based, low-overhead, and non-
intrusive ICS monitoring mechanism.
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5.1 Implementation Considerations
A network-based threat detection mechanism of this nature has to
include an EM radiation capturing and processing capability in real
time. Although the experiments presented relied on SDR hardware
to discover and capture EM emissions, it is not necessary to use
them in a real-world deployment. Once the emission frequency of
the infrastructure is identified, a purpose-built fixed radio receiver
can be used to capture EM emission. Furthermore, the processing
of captured EM data in real time can be performed onboard the
signal capturing hardware using a dedicated embedded processor
or a field-programmable gate array (FPGA) built into the signal
capturing hardware itself [7]. Self-contained EM radiation capture
and processing equipment (called a monitor node hereafter) can be
powered using the same power supply facility in the ICS infras-
tructure. However, networking them with each other needs to be
achieved using a communication infrastructure independent of the
ICS network.

There are multiple potential approaches to connect the monitor
nodes together. The obvious solution is to have a separate inter-
nal network — wired or wireless — to which the monitor nodes
are connected. However, because monitor nodes do not require a
high-bandwidth communication channel, having a dedicated net-
work only to serve them is an unnecessary overhead. Alternatively,
it is possible to use the existing power supply infrastructure for
transferring network packets in a reliable manner, i.e., powerline
communication [13]. In that approach, the monitor nodes can de-
liver their detection alerts and other telemetry through their power
supply wiring, which is highly reliable and difficult to disrupt by
an attacker.

5.2 High-level Design
Figure 5 illustrates the high-level view of an ICS infrastructure
where monitor nodes are deployed in multiple locations on the
network. At the highest level, i.e., Level 3, of the ICS infrastructure,
there are engineering workstations that run specialised software
to govern the entire manufacturing process. The level below that,
i.e., Level 2, has a human-machine interface (HMI) that facilitates
monitoring and controlling specific functionalities of the ICS infras-
tructure by allowing human technicians to interact with the devices.
At Level 1, all automated devices are placed to operate the ICS infras-
tructure, such as programmable logic controllers (PLC), intelligent
electronic devices (IED), and remote terminal units (RTU). Finally, at
Level 0, the sensors and actuators that perform the manufacturing
tasks are available.

5.3 Backbone-level Monitoring
The monitor nodes can be placed at different locations through-
out the ICS infrastructure. Among them, an important and most
obvious location is at the backbone level of the network, which
connects general-purpose computers at Level 3 to other levels in
the infrastructure. If packet sniffing and other security mechanisms
were always active in the network at this level, the processing and
storage overhead would be significantly higher. In contrast, the
monitor node that works in this network segment will be process-
ing EM emission in real time with a fixed processing overhead and
no storage requirement.

5.4 Device-level Monitoring
Although the monitoring at the backbone-level of the network al-
lows the observation of the full picture of network behaviour from
outside world, it does not enable detecting subtle traffic patterns at
the close proximity to different individual ICS devices. Therefore,
it is important to deploy and monitor nodes at branches in the ICS
network, closer to individual devices of interest. An important ad-
vantage the monitor nodes have is that regardless of where exactly
they are deployed in the network, i.e., at a busy network backbone
or low-traffic branch, they have the same amount of processing
and other computational resource usage. Hence, the monitor nodes
distributed across the ICS infrastructure will be identical in all
aspects.

6 Conclusion and Future Direction
This work demonstrates the potential of using unintentional EM
radiation emitted from Ethernet cables as a non-invasive tool for
enhancing security and forensic readiness in ICS. By employing
EM side-channel monitoring, we can detect network-based attacks
without directly interfacing with the ICS infrastructure, making
this approach particularly valuable for independent forensic audits.
Through targeted frequency identification and EM trace analysis
using efficient machine learning models, such as Random Forest
classifiers with AdaBoost, our method achieved a high detection
accuracy of 99.70%, supporting the feasibility of resource-conscious
real-time attack detection in ICS environments.

Machine learning models such as RFC with AdaBoost, MLP, and
SVM ensure low processing overhead, making them suitable for
resource-constrained environments. Future developments include
creating a compact self-contained hardware unit that integrates EM
signal capture, embedded processing, and real-time analysis. This
scalable and efficient design would enhance ICS security, providing
responsive and autonomous intrusion detection capabilities.
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Appendix A
Figure 5 illustrates the high-level view of the ICS infrastructure
with the placement of the sniffer and monitor nodes. In this ICS
infrastructure, the typical network security and forensic-readiness
features are available, such as packet sniffers in strategic locations
of the network. However, they are deactivated by default and only
enabled on demand whenever a suspicious network-based threat
is noticed. The network of the monitor nodes that captures EM
radiation data and processes in real time for suspicious activity is
placed independently of the ICS infrastructure. They communicate
with each other through their own independent network, such as
powerline communication, and are capable of directly communicat-
ing with security components, such as packet sniffers. These packet
sniffers and any other security mechanisms are activated directly by
a monitor node upon the detection of suspicious network activity.
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Figure 5: A high-level view of an ICS infrastructure with EM-SCA monitoring mechanism in place.
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