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File type identification (FTI) has become a major discipline for anti-virus developers, firewall designers
and for forensic cybercrime investigators. Over the past few years, research has seen the introduction of
several classifiers and features. One of these advances is the so-called n-grams analysis, which is an
interpretation of statistical counting in classified fragments. Recently, n-grams based approaches were
already successfully combined with computational intelligence classifiers. However, the academic body
of literature is scant when it comes to a comprehensive explanation of machine learning based ap-
proaches such as neural networks (NN) or support vector machines (SVM). For example, how the input
parameters, including learning rate, different values of n for n-grams, etc. influence the results. In
addition, very few studies have compared the scalability of NN vs. SVM approaches. Therefore, a sys-
tematic research in comparing different approaches is needed to address these questions. Hence, this
paper investigates this type of comparison, by focusing on the n-gram analysis as a feature for the two
different classifiers: SVMs and NNs. This paper details our experiments with two NNs and four SVMs,
using linear kernels and RBF kernels on RealDC datasets. In general, we found that SVM-based ap-
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proaches performed better than the NN, but their scalability is still a challenge.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Although data recognition in the past was primarily intended to
assist a user, nowadays it is used in many products, such as intel-
ligent firewalls or forensic diagnostic applications. Additionally,
successfully recognizing spoofed files is becoming increasingly
important. In some cases, the evaluation of a single data source in
an investigation can take years. Thus, methods have been devel-
oped that use artificial intelligence, which is capable of finding files
and classifying their origin type. This could refer to deleted vol-
umes, hidden data in other files or within data streams, perhaps
deliberately misnamed file extensions, disk or block level slack
space and unallocated space (Du et al., 2018). Research in this area
is increasingly focused on the correct identification of files, espe-
cially the file type recognition. Today, this research is an integral
part of the technology in our society. Many attack scenarios are
based on the new types of intrusion data. Therefore, effective
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identification is essential. Thus, researching the file type identifi-
cation (FTI) is not only about recognizing files but it is also about the
real-time monitoring systems that can detect, recognize and pre-
vent attacks on businesses and states.

Although the topic of FTI has been widely studied, several re-
searchers have proposed new methods without testing them
against all of the previously existing methods. Hence, some prob-
lems have now arisen that require a detailed reappraisal of previous
approaches. The training and testing of neural networks (NN), for
FTI on public data corpora, seems to be a gap in previous scientific
work. Furthermore, the usage of Support Vector Machines (SVMs)
(Vapnik, 1998) with different kernels was not exhaustively per-
formed, as there is an increasing number of possibilities. Li et al.
(2010) did work with monograms on SVM with several kernels,
and Gopal et al. (2011) used SVMs and k-nearest neighbour (kNN)
to compare the performance with mono- and bigrams, but the
direct comparison between SVMs and NNs on public data sets has
not been performed. Therefore, in this paper we aim to perform
systematic research on the performance of machine learning-based
approaches of FTI by studying the influence of different setups on
input parameters, such as a different n for n-gram analysis to
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classification results. We also discuss the scalability of NNs
approach vs. SVMs. The main contributions of this paper can be
listed as follows:

e A comprehensive survey on FTI approaches in the context of
cyber security and forensics in the literature.

e A comparative study of NNs and SVM approaches for FTI, by
using n-gram analysis.

o Intensive experiments on different NNs and SVM algorithms
with a popular dataset.

2. File type identification: survey

The topic of FTI has been studied for years (Roussev and Garfinkel,
2009). Several taxonomies were developed and researched. The first
split in topics was the differentiation between identifying files or
fragments of files. Garfinkel (2010) stated that there are no “common
schemas, file formats, and ontologies”. Rainer Poisel et al. (2014)
categorized the whole research area into five main classes:
signature-based approaches, statistical approaches, computational
intelligence-based approaches, approaches considering the context,
and other approaches (Poisel et al., 2014). This section focuses only
on the three most popular classes: signature-based, statistical and
computational intelligence-based approaches.

2.1. Signature-based approaches

The first category describes techniques based on a comparison
of known to unknown file fragments. Probably the best-known
method is the so-called “magic byte file” in UNIX operating sys-
tems. The “file” command extracts several bytes located at the
beginning or end of the examined file and compares it with a list of
pre-defined values. Many popular carving tools use this method for
matching file types. This method was extended by Pal et al. (Pal and
Memon, 2009; Nguyen Thi et al., 2017) for the use of header- and
footer byte-sequences for “syntactical tests”. Garfinkel et al. (2010)
also worked on this approach by adding further signatures. Then,
hashing emerged and was discussed by Ruback et al. (2012), who
used data mining techniques to create hash sets. The hashing of
files did not help with analysing unknown file types but rather
helps to find well-known files. This method of hashing was further
researched, by authors like Chawathe (2009), who used the
locality-sensitive hashing scheme to cluster similar file types
(Gionis et al., 1999). Garfinkel (2006) and Dandass et al. (2008)
proposed the use of hash-values for fragments to identify
uniquely files with the same fragments. They also recommended a
change of hashing algorithms, including MD5 and SHA1 to CRC32,
as it is shorter and has a “comparably low false-positive rate”
(Poisel et al., 2014). A further speed enhancement was provided by
Collange et al. (2009), who proposed using Graphical Processing
Units (GPUs), such as “hashcat”, plus a selective hashing of signa-
tures for the disk sector, also known as “sector hashing” (Garfinkel
and McCarrin, 2015). The problem was that these hashes only
worked on fixed, predefined block sizes. Streams of data and single,
especially small files were not affected. Garfinkel et al. (2010)
contributed further by researching a faster way to match master
files with image files by using maps. Bloom filters were then
introduced (Garfinkel et al., 2010; Young et al., 2012) with similarity
preserving hashing (SPH) (Roussev et al., 2010), an entropy-based
scheme for feature selection and another length compression al-
gorithm (Roussev, 2011) advanced processing speed. Finally, the
tool “sdhash” was introduced by Roussev (Roussev et al., 2010),
which performed with 94% accuracy, and was superior to “ssdeep”,
with 68% accuracy and was developed by Kornblum (2006).
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Consequently, Roussev and Quates (2012) started thinking about
“sdhash” real-time digital forensics and triage, and Roussev et al.
(2013) estimated a necessary calculation speed of 120 MB/s,
which could be achieved with 120—200 computing cores.
Continuing these efforts, Breitinger et al. (2013) advanced the
research with similarity preserving hashing (SPH). Subsequently,
expediting the lookup speed through hierarchical Bloom filter tress
was achieved by Lillis et al. (2018).

2.2. Statistical approaches

The second class of approaches, called the “Statistical Ap-
proaches”, combines those techniques that make use of the char-
acteristic attributes of the file's content. Typically, counting bytes
and the interpretation of those in comparison to other bytes are
used. The usual representatives of this kind are informational en-
tropy by Claude Shannon (1948) and binary frequency distribution
(BFD) by McDaniel and Heydari (2003). Table 1 provides an over-
view of the progression. This table, referred to by many previous
works (Daniel Evensen, 2015; Amirani et al., 2013), is a well-tended
classic overview that also includes research beyond fragmentation-
FTL

McDaniel and Heydari (2003) published a paper introducing
three new methods of content-based FTI: Byte frequency analysis
(BFA), The Byte Frequency Cross-Correlation (BFC) and the File
Header/Trailer (FHT) algorithm. The BFA algorithm determines the
number of occurrences of bytes (8 Bits <=> 256-byte values). This
sort of pre-processing is referenced as Byte Frequency Distribution
(BFD). It is also known as monogram statistic, 1-g or byte histogram.
These values, independent of a file's size, are divided by the total
number of bytes, normalizing them to a scale between zero and
one. This BFD indicates different characteristic patterns, based upon
the file's type. During the testing, the BFA algorithm classified 27.5%
of 30 different file types correctly.

The second method, Byte Frequency Cross-Correlation (BFC)
does not just consider the relative difference, but also the absolute
byte's values. This extension of the BFA has an accuracy of 45.83%.
The weakness, however, was the incomparability with file fragment
analysis, as the whole file needs to be analysed.

The third method, named File Header/Trailer (FHT) algorithm,
also analysed the header and the footer, of the focus files. This time,
the overall accuracy rate reached 95.83%. Later, Roussev and
Garfinkel (2009) mentioned that this method is not suited for
real-life FTI, as signatures do not always exist in the header/trailer,
especially when dealing with file fragments in data recovery
contexts.

The BFD approach was addressed by authors in (McDaniel and
Heydari, 2003; Li et al., 2005), where they used the 1-g-distribu-
tion, which is a vector of two 256-element vectors, collecting blocks
at the size of 20, 200, 500 and 1000 bytes. Contrary to common
expectations, increasing the blocks lowered the result. While blocks
of 20 bytes achieved a 100% classification result, 1000 bytes per-
formed with only 77% worse. However, these blocks were not
random parts of the file, but systematic fragments in the current
block size. This approach did not extend the state-of-the-art on the
research on fragmented FTI.

Karresand and Shahmehri (Dunham et al., 2005; Karresand and
Shahmehri, 2006a,b) proposed a new centroid of 2-g based
approach. They used the “Rate of Change” (ROC) that measures the
difference of bytes. As such, file types with many 0 x 00 and OxFF,
such as JPEG's metadata, achieved the best result. The confusion
matrices stated a true positive accuracy of 99.94%, unless no restart
marker was within the fragment. In that case, the accuracy dropped
to 42.66%. Their false positive rate was especially for high entropy
files like ZIP and PE files by to 70%.
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Table 1
Research Progress Table based on previous work.
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Contributors File/ Method #Types  #Files Accuracy %
Fragment
McDaniel and Heydari (2003) File BFA 30 120 275
BFC 45.83
FHT analysis 95.83
Li et al. (2005) File Manhattan distance 8(5 800 82 (One-Centroid)
Manhalanobis distance classes) 89.5 (Multi-Centroid)
Multi-centroid 93.8 (Example files)
Dunham at al. (2005) File Neural networks to classify encrypted data with the same 10 760 913
key.
Karresand and Shahmehri (2006a,b) Fragment  Oscar method (based on Mean and standard derivation of 49 53 97.9 (JPG)
BFD)
Biased for JPG
Karresand and Shahmehri (2006a,b) Fragment  Oscar method + rate of change between consecutive byte 51 57 87.3-92.1 (JPG
values 46—84 (ZIP)
12.6 (EXE)
Zhang et al. (Zhang and White, 2007) Fragment  BFS and Manhattan distance 2 100 925
Moody and Erbacher (2008) Fragment  Mean, standard deviation, kurtosis 8 200 74.2
Calhoun and Coles (2008) Fragment Fisher's linear discriminant, 2 100 68.3—88.3 (bytes 129—1024)
Statistical measurements 60.3—86 (bytes 513—1024)
Amirani et al. (2008) File PCA + Neural networks feature extraction 6 720 98.33
MLP Classifier
Cao et al. (2010) File Gram Frequency Distribution, Vector space model 4 1000 90.34 (2-g +
256 g as type signature)
Ahmed et al. (2010) File Cosine similarity, divide conquer, 10 2000 90.19
MLP classifier
Ahmed et al. (Dhanalakshmi and Chellappan, Both Feature Selection, 10 5000 90.5 (40% of features)
2009) Content Sampling, 88.45 (20% of features)
KNN Classifier
Amirani et al. (2013) Both PCA + Neural Networks feature extraction 6 1200 99.16 (Whole files)
SVM C(lassifier 85.5 (1500 bytes fragments)
82 (1000 bytes fragments)
Evensen et al. (Daniel Evensen, 2015) Both n-gram analysis with naive bias classifier 6 60000 99.51 (Whole files)
99.08 (8192 bytes fragments, 5
types)
98.34 (1024 bytes fragments, 5
types)
Beebe et al. (2016) File K-Means, Hierarchical classification 50 2600 57.56 (theorical model)
74.08 (winning model)
Bhatt et al. (2020) Fragment  SVM, Hierarchical classification 14 14000 67.78

Dhanalakshmi and Chellappan (2009) researched a list of sta-
tistical measures for FTI. The approaches’ accuracy of 66% was
achieved in 14 out of 25 file types.

Ahmed and Lhee (2011) also made use of n-grams by investi-
gating FTI on executable code within network packet streams. They
determined that the order of n-grams influenced the accuracy. As a
result, 3-g identify an executable with an accuracy of 92.78% (FP-
rate: 4.69%, false negative rate of 2.53%). Subsequently, they used
SVMs with an rbf-kernel for fast file type identification. Further
research on n-grams was performed by Cao et al. (2010), who
analysed the accuracy depending on the number of grams. They
achieved a peak result using 300 g per fragment.

Other approaches were tested by Hall and Davis (Hall, 2006),
who used the information entropy and compressibility to calculate
the standard deviation of “sliding windows”. The difference be-
tween known file type and the calculated plots, known as “good-
ness of fit”, classified the file's type.

Another approach was used by Moody and Erbacher (Erbacher
and Mulholland, 2007) in 2008. They developed a metrics-based
approach named “SADI”. The idea behind SADI is to focus on the
statistics of encodings. They noted that all text-based file types,
such as.txt,.html or.csv form a subset of file types, which could
eventually be classified in a secondary analysis method. For the first
stage, only a statistical analysis was used. The second stage then
utilised pattern recognition algorithms.

Veenman (2007) subsequently experimented in 2008 with a
new approach. He categorised files into the three major clusters:

BFD, information entropy and Kolmogorov complexity. His findings
indicated that higher entropies resulted in a loss of accuracy. For
example, HTML and JPEG files were classified with 98% accuracy
while ZIP files resulted in only 18% accuracy. This approach was
extended by Calhoun and Coles (2008) without the use of metadata
but by adding further statistical methods, such as Fisher's linear
discriminant and the longest common subsequence.

Axelsson (2010) introduced the “Normalized Compression Dis-
tance” (NCD). The approach compared the compression of well-
known file types to test fragments. A k-nearest-neighbour classi-
fier's majority vote was used. Depending on k, different results
were achieved: k = 1 resulted in an accuracy of 36.43%. k = 10
reached 32.86%.

Beebe et al. (2016) also mentioned a hybrid approach, which is a
combination of the signature and statistical ones that can be
applied during the multi-level class-to-type hierarchical classifi-
cation process to optimise the file type identification in the context
of file fragments.

2.3. Computational intelligence approaches

The third type of approach is Artificial Intelligence (Al)-based
methods. Most common representatives of such systems are based
on SVMs, NNs, Bayesian Networks (BNs) and kNN. Ahmed et al.
(2010) studied several classifiers by using 1-g features. Their
investigation on NNs, kNN and SVMs with KNN performed the best.
In their research, they described a reduction in computational time
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by a factor of fifteen in case a subset of features was used, and the
sample blocks were randomly ordered. Li et al. (2010) worked also
with SVMs with the linear kernel using all 28 1-g. They achieved an
overall accuracy greater than 89%. Gopal et al. (2011) also utilized
SVMs as well as kNNs on 1-g and 2-g comparing their accuracy to
the commercial of the shelf (COTS) solutions: libmagic and TrID. To
ensure, the signature was not classified, the first 512 bytes of each
file were removed. Consequently, both the KNN on 1-g, and the SVM
on 2-g classified with an accuracy of 85%, which is seven times
better than the examined COTS. This approach as proven
throughout several other scientific works (Young et al., 2012).

Sportiello and Zanero (2011) also focused on the feature selec-
tion of BFD, RoC, entropy, complexity, mean byte value for their
SVM. According to their confusion matrices, they achieved 71.1%
for.doc files using Entropy, BFD and Kolmogorov complexity. For
Bitmap files, they utilized RoC to gain an accuracy value of 98.1%.
Their approach was later repeated (Sportiello et al., 2012), checking
for a different behaviour as all compound files, high entropy files
like zips, were replaced by empty files. The different training phase
resulted in three to five percent better test results. Another
approach by Fitzgerald et al. (2012) made use of “natural language
processing's (NLP) average contiguity between bytes of sequences
and the longest continuous streak of repeating bytes” (Poisel et al.,
2014) to archive a total accuracy of 40%, whereby the types ac-
cording to the same group of types, as Moody and Erbacher
(Erbacher and Mulholland, 2007) described, could vary. Because of
that, the given approach might serve best to classify only certain
groups of file types such as.csv,.gif, or.html. Several features, such as
Hamming weight, standardized kurtosis, standardized skewness,
or, maximum byte streak, to name a few, were used by Beebe et al.
(2013) in combination with SVM classifiers. They achieved an ac-
curacy of around 80% for the file type groups of text-based and
multimedia file formats.

Amirani et al. (2013), (Amirani et al., 2008) used the Principal
Component Analysis (PCA) to extract relevant features from the
BFD of training files, an unsupervised learning process. They
trained using a three-layered neural network (MLP) (Amirani et al.,
2008) and an SVM (Amirani et al., 2013) in combination with a
back-propagation algorithm. The resulting accuracy reached
99.16%, although other scientists (Poisel et al., 2014) complained
about missing details on the training set. In addition, Carter (2013)
who combined a disassembler and n-gram analysis to identify
executable code. The classification was performed by a kNN. Kattan
et al. (2010) came up with the idea to utilise Genetic Programming
(GP) to FTI. They used the principles of segmentation, creation of
file-prints and classification to FTI and achieved an accuracy of
70.77% for five file types.

Rainer Poisel et al. (2014) are not covered in detail as they are
not relevant to this work. In short, the context considering ap-
proaches utilized meta-data about the information to gather an
idea about its file types. The last group, “other approaches” is a
collective of all approaches that could not be assigned to the other
categories, included hybrid approaches of several other before
mentioned approaches. So are the interpretation of binary visual-
ization with SVMs (Contiet al., 2010) or Roussev and Garfinkel's
(2009) combination of statistical and signature-based approaches
typical examples for this category.

Beebe et al. (2016) presented a hierarchical classification model
based on the clustering techniques for 50 file types. Their accuracy
is up to 74.08%.

Bhatt et al. (2020) also used a hierarchy-based classification
approach based on SVM to classify the file fragment. They gained
the average accuracy of 67.78% and an F1-measure of 65% of 14 file
types with 1000 fragments each.
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3. Comprehensive study of n-gram analysis based on support
vector machine and neural networks

Although the research topic of FTI has been studied, several
approaches proposed new methods without testing them against
all the previously existing methods. Consequently, some problems
arise that require a detailed reappraise of previous approaches. In
addition, the training and testing of NNs for FTI on public data
corpora seem to be a gap in previous scientific work. Furthermore,
the usage of SVMs with different kernels was not exhaustively
performed. Hence, the leading questions are: how strong is the
influence in results if a different setup of NNs and SVMs is used?
How does it scale? To answer these questions, we describe an
empirical study in this section and the experimental results in
Section 4.

3.1. Dataset

Since almost all scientific work in this field is based on indi-
vidual data sets, a direct comparison of the achieved results is
impossible as described in (Garfinkel, 2010). To address this prob-
lem, some researchers have suggested the use of a public record.
Hence, in our work, all experiments are carried out with a public
data corpus called the Realistic Data Corpus, aka “RealisticDC” or
“RealDC” (http://downloads.digitalcorpora.org/corpora/files/
govdocs1/) was developed by the Digital Intelligence and Investi-
gation Directorate (DiiD) of CERT in the Software Engineering
Institute at the Carnegie Mellon University. We look at the file type
package of RealDC datasets. In this package, all files have been
sorted by type. These include the most popular type-
s:.xls,.doc,.csv,.txt,.jpg and.ppt. These files are chosen because of
their popularity and also the experimental results from these file
types can be extended for other relevant file types, e.g. .png,.html,
etc. These files were then pre-processed (carved, labelled) for the
following experiments.

3.2. Experiment 1: n-gram classification using a NN

The first experiment used a NN for the classification of file types.
n-grams were fed into a multi-layer NN for learning. During the
experiment, the learning rate for optimum results was determined
by using an exhaustive search.

3.2.1. Data preparation and training

In this experiment, RealDC was split into two groups, one for
testing and one for training. The most popular file types included in
the RealDC are used, containing the formats.xls,.doc,.csv,.txt,.jpg
and.ppt. For the selection of the files, only files with a file size
greater than or equal to 5200 bytes were used. The first 200 bytes
were cut off, preventing any magic-byte/file header from being
recognized. The following 5000 bytes were used for analysis. Other
bytes are ignored. Note that the cut-off size also depends on the file
types, the size we used in this paper is just for the relevant file types
in our experiments. We then convert the byte frequency distribu-
tion of different file types to n-grams with n = 1 and 2. The data is
also normalized and then fed into the NN's input layer (256 nodes).
Our NN has 256 neurons on input layer, 128 neurons in the hidden
layer and six neurons for the last, the output layer (equivalent to 6
file types).

We applied cross validation and trained with 6000 files (1000
files for each file types) whereas 6000 files for the testing (1000
files for each file types). We also optimised the learning rate by
varying it from 0 to 99% and selecting the best successful rate. The
optimal rate for n = 1 is 1% and for n = 2 is 8.17%.
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3.3. Experiment 2: n-gram classification using an SVM

In the second experiment, the same data corpus was used for
training a SVM. Therefore, only the comparable n-grams from the
previous experiment, n = 1 and n = 2, were tested. Both, linear
kernel and radial basis function (rbf) kernel were trained and tested
on disjunctive test/train data corpora.

3.3.1. Experimental setup

For setting up the experiment, “WEKA” (https://www.cs.
waikato.ac.nz/ml/weka/) version 3.8.3 was used. The training data
from Experiment 1 were also used to train four different SVMs. Two
SVMs were trained using a linear kernel (Vapnik et al., 1997), the
other two were trained with rbf kernel (Cristianiniand and Shawe-
Taylor, 2000). Each kernel was trained and tested once for n = 1 and
forn = 2.

3.3.2. Data preparation and training

In detail, each file type was classified once against other file
types. Thus,.csv-files were trained against.doc,.jpg,.ppt,.txt and.xIs.
Then,.doc-files were trained against.jpg,.ppt,.txt and.xls and so on.
In total, the SVM trained 15 times.

4. Comparison of experimental results and discussion

After six experiments, two NNs and four different SVMs were
trained on the same set of data. For each experiment, a “Confusion
Matrix” was calculated, listing the prediction per file type in rows of
data. The correct file type is labelled in the last column, next to the
total classification result. The correct classifications were marked in
green. The testing results in this section are True Positive rate.

4.1. Experimental results: neural network

4.1.1. Testing results for neural network n = 1

The confusion matrix (Table 2) visualizes a significant drop of
classification success for.ppt files. Surprisingly, the file types.csv,.txt
and.xls were classified correctly in most cases, although these for-
mats all contain much ASCII-encoded symbol.

4.1.2. Testing result for neural network n = 2

On the second neural network, Table 3 shows results were
computed by feeding the input-layer with all attributes (2562). As
an overall classification, a result of 85.88% (in average for 6 testing
file types) was achieved. For the investigational purpose of this
result, a progress graph was drawn, showing the average success
rate within the next 100 classifications on the y-axis and the cur-
rent sample data on the x-axis (Fig. 1).

Table 2
Confusion matrix Neural Network n = 1.
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The red area at the beginning of this graph indicates the testing
results from the training. This area was not counted into the overall
result as test and train data corpus needs to be disjoint. It is
particularly noticeable that the classification of jpg files did not stay
reliably high but reduced suddenly. This point should be examined
further in the future work and so does the.ppt file type.

4.2. Experimental results: support vector machine

This section presents the outcome of four experiments on sup-
port vector machines. There are confusion matrices for each
experiment, thereby making the result comparable to the neural
network's result. If the same n was used in the description, identical
attributes on both tests can be presupposed.

4.2.1. Testing result using a linear kernel with n = 1

Testing all 5241 files from test data corpus, 4795 files were
classified correctly. So, the overall classification ratio was 91.49%.
The remaining 446 files, 8.50%, were misidentified. The following
confusion matrix (Table 4) lists the classification results in detail.

The biggest flaw occurred at ppt-files. They failed in 24.7% of all
classifications. Apart from those files, this test proved solid results,
in most cases at ~95%.

4.2.2. Testing result using rbf kernel with n = 1

While initiating the classification on the test data corpus, the
flaws in training became clearly visible. The overall classification
stagnated at 65.12%, failing in 34.87% of all cases.

As shown in the confusion matrix (Table 5), the file types ppt
and txt were not classified correctly in general. This observation
matches the observations during the training and might indicate a
deficiency in the classifier or the training set. Without these two file
types, the classification ratio had been on 91.82%, potentially out-
performing the linear kernel.

4.2.3. Testing result using a linear kernel with n = 2

After finishing the experiments for n = 1, linear and radial basis
function kernels were tested for n = 2. During the training phase for
the linear kernel, a classification result of 100% was achieved. After
this perfect classification training, the linear kernel SVM classified
4756 files out of 5241 files correctly. The total success rate was
90.74%. In detail, especially.csv,.doc, and.xls performed above 95%.
Like all previous experiments with SVMs, ppt performed worst, this
time with only 77% accuracy (Table 6).

4.2.4. Testing result using a rbf kernel with n = 2
In the last experiment, the trained SVM was tested using the test
data corpus. The total number of attributes was 2562, again. In the

csv | doc ipg ppt
716 | 1 0 1

0 761 33 92
0 1 868 15
0 383 24 476
0 2 10 80
47 1 0 0

txt | xls

L 122 Jose2n | oSV
3 |2 | 85419% | doc
9 |4 |9676% |irg
8 |1 |5336% | Pt
802 | 0 | go700, | txt

0 | 850 | 94650, | xIs
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Table 3
Confusion matrix Neural Network n = 2.

csv | doc | jpg | ppt | txt | xlIs

735 | O 0 1 1 99.19% | csv

0 609 | 2 242 | 33 68.58 % | doc

0 |0 [786]28 |72 88.01 % | jpe

1 184 | 16 681 | 11 76.25 % | ppt

S| O | N s

0 1 2 63 831 92.64 % | txt

65 1 0 0 0 833 | 92.65% | xlIs

1
© A R m )
s fe g
Qo095
o
o
s csv
§ 0.9 g
E oc
S 085 irg
S \ﬁf‘“\ ——ppt
E 0.8 txt
o xls
0.75
T8RRI RS I RLRIIINREEBSABS
e AN N ANOOON T T TN OO ONMNIMNOOGO 0
Test-Data samples
Fig. 1. Classification result of testing datasets for different file types.
Table 4
Confusion matrix SVM with linear kernel on n = 1.
csv | doc | jpg | ppt | txt | xIs
708 | 0 1 1 30 1 csv 95.5%
2 878 | 0 10 5 5 doc 97.6 %
0 8 806 | 86 0 0 ipg 89.6 %
1 10 199 | 681 | O 9 ppt 75.7 %
37 7 2 1 852 | 1 txt 94.7 %
0 6 4 20 0 870 | xls 96.7 %
end, 4450 files were classified correctly. That makes 84.90% overall 4.3. Evaluation of results
classification, or 15.09% falsely classified files. Again, ppt-files were
poorly classified. A property that was observed in all tests in this Summarizing the experiments, the results can be visualized and
series (Table 7). interpreted in several ways. First, a general overview of the testing

results realized is displayed in Fig. 2.
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Table 5
Confusion matrix SVM with rbf kernel on n = 1.
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csv doc jpg | ppt |txt| xIs
657 17 0 0 |66| 1 eV | 88.66 %
0 849 1 0 | 5| 45 doc | 94339,
0 7 879 | 7 |0 7 g | 97.66 %
1 34 714 | 69 |2 80 PPt | 07.66 %
338 383 0 0 (179 o Xt | 19.88 %
0 110 2 4 4| 780 Xls | 86.66 %
Table 6
Confusion matrix SVM with linear kernel on n = 2.
csv doc ipg ppt txt xls
602 |1 0 0 137 |1 csv | 81.24%
0 802 | 0 3 94 1 doc | 89.11%
0 21 727 | 100 | 52 0 ipg | 80.77%
0 18 161 [ 660 | 58 3 ppt | 73.33%
15 47 0 0 838 | 0 txt 93.11%
0 16 0 3 60 821 | xls 91.22%
Table 7
Confusion matrix SVM with rbf kernel on n = 2.
csv | doc | jpg | ppt | txt | xIs
710 | 2 0 0 28 1 CSV | 95.81 %
0 884 | 0 5 11 0 doc 98.22 %
7 36 | 750 | 105 | 2 0 g | 8333 %
0 8 185 | 696 | 3 8 PPt | 77.33 %
35 130 |0 1 834 | 0 Xt | 92.66 %
0 15 |0 3 0 882 | XIs | 98.00%

The overall figure is split in half (Table 8), showing the difference
for n = 1 on the left and n = 2 on the right. Except for the gap in
RBF-kernel's, the neural network and the support vector machines
predicted the results in an insignificantly different way. The SVMs
accuracy ranged from 65.12% to 91.49% while the NN's accuracy
ranged from 85.80% to 85.88%. The results indicate that at least one
Support Vector Machine outmatched the neural network approach.
Comparing the overall results (Fig. 2), with the intention of
answering one of the initial problems, to estimate the evolution of
accuracy for increasing n, two answered can be formulated. First,
the overall accuracy did increase from 80.7% to 87.1% by increasing
n by one. Second, the increase of accuracy by only 0.1% on the
neural network was not significant. And the linear kernel on the
SVM even decreased the accuracy. Contrary to expectations, the
increase of computational power by increasing the size of the

neural network, the n = 2 approach did not perform better than the
monograms did. It seems to be a paradox, which also concerned Li
et al. (2005), who already noted an inconsistency with n-gram
analysis, as increasing data input reduced the accuracy.
Interpreting the confusion matrices, some tests revealed typical
fail predictions within the predicted file types. As an example,
SVMs mis-predicted ppt file as often as jpg files and vice versa that
is an interesting behaviour, which might indicate a related file
structure. So did the neural network approach prefer to falsely
predict ppt files as doc files and vice versa. Different types of errors
can draw the conclusion, that both algorithms found a unique way
to solve the problem, although it is probably impossible to fully
reconstruct the exact behaviour inside the neural network. To
investigate the different approaches by another perspective, the
evolution of testing to training accuracy will be highlighted.
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Fig. 2. Overall testing results.

Obviously, the training achieved always a better accuracy than the
testing.

Fig. 3 through 6 visualize the evolution by the end of the training
to the end of the testing stage. Of particular significance is the linear
kernel's training set. A 100% perfect classification might indicate
possible overfitting of the SVM.

In this case, a worse testing result on a disjunctive data corpus
should validate this result. But the testing of this approach did not
confirm this theory. It rather seems to be better of having the
equality in all file type predications except on JPG. A training set of
only 1000 files per type seems to be small enough to allow this
theory, especially when the number of attributes is 2562.

4.4. Discussion of results and comparison to alternative approaches

As mentioned above, the linear kernel SVM performed better
than the neural network. Yet, the results for the SVMs are widely
spread and general superiority of SVMs over NN cannot be claimed.
In both cases, high classification accuracies were noticed. Also, the
expected growth on accuracy did not correlate with the increase of
n.

Mayer (2011) worked on the same performance problems as this
work. He achieved only 66% but as 25 file types were used, the work

is not exactly comparable. Yet, Ahmed and Lhee (2011) use the n-
gram approach with n = 3. That leads to the assumption, that
increasing n also increases the meaningfulness of the gram. How-
ever, there is some dissent on this topic. Evensen et al. (Amirani

Table 8
Testing results split into features versus classifier.
n=1 n=2
NN 85.8% 85.9%
SVM rbf 65.1% 84.9%
SVM lin 91.4% 90.7%
Overall 80.7% 87.1%
[op]¥e} =} a oo oors
1 L Q0 cw 99 99
=] £~
o
0.8
06 HTrain
0.4
M Test
0.2
0
CSVv DOC JPG PPT TXT XLS

Fig. 3. SVM n = 1 linear kernal.

et al., 2013) noted the following: “One important observation
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Fig. 4. SVM n = 1 rbf kernal.
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Fig. 5. SVM n = 2 linear kernal.
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Fig. 6. SVM n = 2 rbf kernal.
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done here is the fact that when considering around 350 files for
learning, 3-g is not superior to 2-g”

Cao et al. (2010) delivered some proof to support Mayer. Their
result was an optimum for n = 300. This seems to be a theoretical
value, as it is not practically possible to feed a neural network with
2300 input neurons, even if there would be no hidden, but only one
output neuron at all. Probably one of the closest comparable ap-
proaches was the work of Gopal et al. (2011), who also used SVMs
with 1- and 2-g. They achieved results on the SVMs TP-rate >85%.

Comparing the results with Beebe et al. results in (Beebe et al.,
2013), also the linear kernel SVM approach improved on the RBF
kernel. However, the used feature was not implemented the same
way, and, in their results, the bigrams outbid the Unigrams. In
general, the linear kernel seems to work better in combination with
n-gram approaches, even if they are slightly modified.

Comparing the results with the results by Mehdi et al. in
(Amirani et al., 2013), the classifiers can be compared instead of the
features. In their scenario, neural networks and support vector
machines had a genuinely neck-and-neck race. Both achieved
classification rates beyond 98%. Although this is a clear indicator for
a better-suited feature, both, neural networks and support vector
machines did not clearly differentiate. In their work, neural net-
works were even slightly better than SVMs.

The most detailed confusion matrices were reported by Wang
et al. (2018). The amount of information produced by their
research allows us to investigate the reported problem of fail clas-
sifications of.ppt files as.jpg. Focusing on the.ppt and.jpg problem,
they also had a significant fail-prediction of.jpg files as.ppt and.pptx.
Since this problem has now occurred in two research studies with
different characteristics, it seems reasonable to conclude that these
two file types are very similar or include each other.

Also, Li et al. (2010) used all monograms as input for the SVM.
The resulting accuracy, 89%, fits perfectly to the best experiment's
result of 91.4%.

Comparing the results achieved with equivalent scientific
works, neither the change of data corpus nor the application of
neural networks changed the classification accuracy significantly.
That leads to the conclusion, that the feature of n-gram analysis
does not allow any better classification than the mean of all sci-
entific works on that approach. The results were in between 85%
and 92%. To further increase the accuracy, an increase for n must be
performed without raising the issue of scalability.

5. Conclusion

In this paper, we perform empirical research for the system-
atisation of knowledge on the performance of two popular machine
learning-based approaches for FTI: SVMs and NNs for n-grams
analysis. Although the limit for n could be increased due to addi-
tional computation power in the near future, the most important
limitation is the fact that the method scales exponentially. Conse-
quently, the development of n-gram-based approaches, that
perform better with scalability or shift the algorithm's computa-
tional cost towards the need for memory usage, is imperative.
Although it was not possible to give a clear preference to SVMs, bad
scalability for NNs was proven.

Looking to the future, the next decade is likely to see the results
of ongoing research and development into computational intelli-
gence deep learning techniques (Nguyen Thi et al., 2017; Kuppa
et al,, 2018) can be applied in the file identification. Also, the
implementation of cloud-based Al and continuously hashing of
known file fragments are likely going to increase the accuracy of
FTI, as well as decrease the computational time and memory usage.
Also, ongoing research could help to improve the functionality of
neural networks if we can explain them (Kuppa and Le-Khac, 2020).
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