
Expediting MRSH-v2 Approximate 
Matching with Hierarchical Bloom 
Filter Trees ICDF2C October 10th 2017
DAVID LILLIS, FRANK BREITINGER AND MARK SCANLON



Approximate Matching

 Scenario: Collection of “known illegal” files. Want to search 
for these on a seized device.

 Finding exact matches is easy (hashing).

 Approximate matching (a.k.a. “fuzzy hashing”) aims to find 
similar files on the byte level, e.g.

 Files that have been extended/truncated.

 Files within files.

 Partial files.

2



 Initially proposed by Breitinger & Baier (2012).

 Generates a similarity digest for each file.

 Consists of one or more Bloom Filters: probabilistic data structure that can say 
whether it probably contains an item, or definitely does not contain it.

 These can be compared to calculate a similarity score.

 File divided into “chunks”: file read byte-by-byte and a rolling hash identifies 
the end of a chunk.

 Each chunk is hashed using FNV (a fast, noncryptographic hashing function).

 Hash used to set 5 bits of the Bloom Filter.

 When Bloom Filter is full, a new, empty Bloom Filter is added to the 
digest, and further inserts are in this.

MRSH-v2 3



Motivations

 Problem: Similarity score comes from a pairwise comparison of two 
similarity digests. Not scalable.

 Aim to explore alternative data structures that can achieve the same 
results in less time.

 Hierarchical Bloom Filter Trees initially proposed theoretically by 
Breitinger et al. (2014).

 This work gathers some empirical data on the performance of this 
approach.

 i.e. Can we do the same thing, but faster?

4



Hierarchical Bloom Filter Trees (HBFTs): 
Building

 Binary tree of Bloom Filters.
 Each parent is twice the size 

of its children.
 Files allocated to leaf 

nodes: round robin.

5

File is processed in the same way as 
for MRSH-v2.

When each chunk is hashed, this is 
used to set bits in the relevant leaf 
node.



Hierarchical Bloom Filter Trees (HBFTs): 
Building

 Binary tree of Bloom Filters.
 Each parent is twice the size 

of its children.
 Files allocated to leaf 

nodes: round robin.

6

The same hash values are used to set 
bits in the parent node also.

A similar process is followed for all 
ancestor nodes.



Hierarchical Bloom Filter Trees (HBFTs): 
Building

 Binary tree of Bloom Filters.
 Each parent is twice the size 

of its children.
 Files allocated to leaf 

nodes: round robin.

7

The file’s MRSH-v2 similarity digest is 
stored in association with the 
appropriate leaf node.



Hierarchical Bloom Filter Trees (HBFTs): 
Building

 Binary tree of Bloom Filters.
 Each parent is twice the size 

of its children.
 Files allocated to leaf 

nodes: round robin.

8

Every leaf node has a set of similarity 
digests associated with it.

Each represents1/L of the collection, 
where L is the number of leaf nodes 



HBFTs: Searching
 To search for a file, it is also 

processed in a similar way.

9

Initially search at the root node.

For each hash of a file chunk, we 
check if it is contained in the root 
Bloom Filter.

If the number of consecutive matches 
exceeds a threshold, it is considered 
to be a successful match.

We call this threshold min_run.



HBFTs: Searching
 To search for a file, it is also 

processed in a similar way.

10

If a match is found, the search 
continues at the next level.

Both child nodes must be 
searched.

✓



HBFTs: Searching
 To search for a file, it is also 

processed in a similar way.

11

The search continues until one or 
more leaf nodes are reached.

✓

✓

✓

✓

✗

✗

✗



HBFTs: Searching
 To search for a file, it is also 

processed in a similar way.

12

Bloom Filters can give false 
positive results, so it is possible 
for searches to reach leaves even 
where there are no similar results.

✓

✓

✓

✓

✗

✗✗

✓

✓



HBFTs: Searching
 To search for a file, it is also 

processed in a similar way.

13

To calculate the similarity scores, 
the existing MRSH-v2 algorithm is 
used to make pairwise 
comparisons.

A similarity digest is created for 
the file that we are searching for.

This must be compared with all 
the digest stored at any leaf that 
the search reaches.

✓

✓

✓

✓

✗

✗✗

✓

✓



HBFT: Some Questions 14

 How many nodes in the tree?

 More nodes: fewer pairwise comparisons.

 Fewer nodes: larger Bloom Filters (fewer false positives).

 What constitutes a positive match for a node in the tree?

 i.e. what threshold should be used for min_run?

 When comparing two datasets, which should the tree represent?



 t5*: 4,457 files (~1.8GiB)

 Gathered from US government websites, often used for approximate 
matching.

 Plain text, HTML, PDF, Images, MS Office documents.

 win7: 48,384 files excluding empty files and symlinks (~10GiB)

 Fresh install of Windows 7.

 Varied file types.

* Obtainable from http://roussev.net/t5

Datasets 15



Experiment #1

 Datasets: Tree represents t5, search for t5.

 Goals:

 Measure effectiveness for exact matching.

 Identify appropriate value for min_run parameter.

 Investigate relationship between size of tree and time to build & 
search tree.

 Investigate relationship between size of tree and number of pairwise 
comparisons required to calculate similarity scores.

16



Experiment #1: Results

 Exact matching:

 When min_run = 4, all identical files are found.

 With higher values, some files are missed.

17

min_run Recall

4 100%

6 99.98%

8 99.93%



Experiment #1: Results 18

Time to build tree and search for all files.
(excluding pairwise comparisons)

Number of pairwise comparisons required 
at leaves.



Experiment #2

 Datasets: 

 Tree represents win7, search for t5.

 Tree represents t5, search for win7.

 Investigate whether HBFT should represent the smaller or larger corpus.

 Measure effect on overall running time.

19



Experiment #2: Results 20

Time to search for t5 in a win7 tree.
(excluding pairwise comparisons)

Time to search for win7 in a t5 tree.
(excluding pairwise comparisons)



Experiment #2 21

 Combination of build time + search time is lower when the HBFT 
represents the smaller corpus.

 Also, less memory usage.

 Total time (including pairwise comparisons): 1,094 seconds.

 Tree models t5 with one file per leaf node (i.e. 4,457 leaves).

 Search for all files in win7.

 MRSH-v2 takes 2,858 seconds.



Experiment #3

 Datasets:

 4,000 files from t5 represent set of “known-illegal” files.

 win7 represents seized disk image, with 140 “planted” files from t5 added:

 100 files that are also in the “known-illegal” set.

 40 files with high similarity to files in the “known-illegal” set:

 10 that have ≥ 80% similarity.

 10 that have ≥ 60% and < 80% similarity.

 10 that have ≥ 40% and < 60% similarity.

 10 that have ≥ 20% and < 40% similarity.

 Aims: 

 Compare time to MRSH-v2

 Evaluate effectiveness of finding planted files.

22



Experiment #3: Results

MRSH-v2
similarity

Files 
planted

Files 
found

Similar 
recall

80%-100% 10 10 100%

60%-79% 10 10 100%

40%-59% 10 10 100%

20%-39% 10 8 80%

Overall 40 38 95%

23

Time to search for planted evidence.
(including pairwise comparisons)

Running time (4,000 leaves):
• MRSH-v2: 2,592 seconds.
• HBFT: 1,182 seconds.



Conclusions

 More leaf nodes lead to fewer pairwise comparisons.

 min_run of 4 looks like a reasonable value.

 If corpora are different sizes, use the tree to represent the smaller one.

 Final experiment: all files with ≥ 20% similarity were found, with time 
reduction of 54%.

 Likely to scale better than existing approach using pairwise comparisons.

24



DAVID.LILLIS@UCD.IE

WWW.FORENSICSANDSECURITY.COM

@FORSECRESEARCH

25


