
Expediting MRSH-v2 Approximate 
Matching with Hierarchical Bloom 
Filter Trees ICDF2C October 10th 2017
DAVID LILLIS, FRANK BREITINGER AND MARK SCANLON



Approximate Matching

 Scenario: Collection of “known illegal” files. Want to search 
for these on a seized device.

 Finding exact matches is easy (hashing).

 Approximate matching (a.k.a. “fuzzy hashing”) aims to find 
similar files on the byte level, e.g.

 Files that have been extended/truncated.

 Files within files.

 Partial files.

2



 Initially proposed by Breitinger & Baier (2012).

 Generates a similarity digest for each file.

 Consists of one or more Bloom Filters: probabilistic data structure that can say 
whether it probably contains an item, or definitely does not contain it.

 These can be compared to calculate a similarity score.

 File divided into “chunks”: file read byte-by-byte and a rolling hash identifies 
the end of a chunk.

 Each chunk is hashed using FNV (a fast, noncryptographic hashing function).

 Hash used to set 5 bits of the Bloom Filter.

 When Bloom Filter is full, a new, empty Bloom Filter is added to the 
digest, and further inserts are in this.

MRSH-v2 3



Motivations

 Problem: Similarity score comes from a pairwise comparison of two 
similarity digests. Not scalable.

 Aim to explore alternative data structures that can achieve the same 
results in less time.

 Hierarchical Bloom Filter Trees initially proposed theoretically by 
Breitinger et al. (2014).

 This work gathers some empirical data on the performance of this 
approach.

 i.e. Can we do the same thing, but faster?

4



Hierarchical Bloom Filter Trees (HBFTs): 
Building

 Binary tree of Bloom Filters.
 Each parent is twice the size 

of its children.
 Files allocated to leaf 

nodes: round robin.

5

File is processed in the same way as 
for MRSH-v2.

When each chunk is hashed, this is 
used to set bits in the relevant leaf 
node.



Hierarchical Bloom Filter Trees (HBFTs): 
Building

 Binary tree of Bloom Filters.
 Each parent is twice the size 

of its children.
 Files allocated to leaf 

nodes: round robin.

6

The same hash values are used to set 
bits in the parent node also.

A similar process is followed for all 
ancestor nodes.



Hierarchical Bloom Filter Trees (HBFTs): 
Building

 Binary tree of Bloom Filters.
 Each parent is twice the size 

of its children.
 Files allocated to leaf 

nodes: round robin.

7

The file’s MRSH-v2 similarity digest is 
stored in association with the 
appropriate leaf node.



Hierarchical Bloom Filter Trees (HBFTs): 
Building

 Binary tree of Bloom Filters.
 Each parent is twice the size 

of its children.
 Files allocated to leaf 

nodes: round robin.

8

Every leaf node has a set of similarity 
digests associated with it.

Each represents1/L of the collection, 
where L is the number of leaf nodes 



HBFTs: Searching
 To search for a file, it is also 

processed in a similar way.

9

Initially search at the root node.

For each hash of a file chunk, we 
check if it is contained in the root 
Bloom Filter.

If the number of consecutive matches 
exceeds a threshold, it is considered 
to be a successful match.

We call this threshold min_run.



HBFTs: Searching
 To search for a file, it is also 

processed in a similar way.

10

If a match is found, the search 
continues at the next level.

Both child nodes must be 
searched.

✓



HBFTs: Searching
 To search for a file, it is also 

processed in a similar way.

11

The search continues until one or 
more leaf nodes are reached.

✓

✓

✓

✓

✗

✗

✗



HBFTs: Searching
 To search for a file, it is also 

processed in a similar way.

12

Bloom Filters can give false 
positive results, so it is possible 
for searches to reach leaves even 
where there are no similar results.

✓

✓

✓

✓

✗

✗✗

✓

✓



HBFTs: Searching
 To search for a file, it is also 

processed in a similar way.

13

To calculate the similarity scores, 
the existing MRSH-v2 algorithm is 
used to make pairwise 
comparisons.

A similarity digest is created for 
the file that we are searching for.

This must be compared with all 
the digest stored at any leaf that 
the search reaches.

✓

✓

✓

✓

✗

✗✗

✓

✓



HBFT: Some Questions 14

 How many nodes in the tree?

 More nodes: fewer pairwise comparisons.

 Fewer nodes: larger Bloom Filters (fewer false positives).

 What constitutes a positive match for a node in the tree?

 i.e. what threshold should be used for min_run?

 When comparing two datasets, which should the tree represent?



 t5*: 4,457 files (~1.8GiB)

 Gathered from US government websites, often used for approximate 
matching.

 Plain text, HTML, PDF, Images, MS Office documents.

 win7: 48,384 files excluding empty files and symlinks (~10GiB)

 Fresh install of Windows 7.

 Varied file types.

* Obtainable from http://roussev.net/t5

Datasets 15



Experiment #1

 Datasets: Tree represents t5, search for t5.

 Goals:

 Measure effectiveness for exact matching.

 Identify appropriate value for min_run parameter.

 Investigate relationship between size of tree and time to build & 
search tree.

 Investigate relationship between size of tree and number of pairwise 
comparisons required to calculate similarity scores.

16



Experiment #1: Results

 Exact matching:

 When min_run = 4, all identical files are found.

 With higher values, some files are missed.

17

min_run Recall

4 100%

6 99.98%

8 99.93%



Experiment #1: Results 18

Time to build tree and search for all files.
(excluding pairwise comparisons)

Number of pairwise comparisons required 
at leaves.



Experiment #2

 Datasets: 

 Tree represents win7, search for t5.

 Tree represents t5, search for win7.

 Investigate whether HBFT should represent the smaller or larger corpus.

 Measure effect on overall running time.

19



Experiment #2: Results 20

Time to search for t5 in a win7 tree.
(excluding pairwise comparisons)

Time to search for win7 in a t5 tree.
(excluding pairwise comparisons)



Experiment #2 21

 Combination of build time + search time is lower when the HBFT 
represents the smaller corpus.

 Also, less memory usage.

 Total time (including pairwise comparisons): 1,094 seconds.

 Tree models t5 with one file per leaf node (i.e. 4,457 leaves).

 Search for all files in win7.

 MRSH-v2 takes 2,858 seconds.



Experiment #3

 Datasets:

 4,000 files from t5 represent set of “known-illegal” files.

 win7 represents seized disk image, with 140 “planted” files from t5 added:

 100 files that are also in the “known-illegal” set.

 40 files with high similarity to files in the “known-illegal” set:

 10 that have ≥ 80% similarity.

 10 that have ≥ 60% and < 80% similarity.

 10 that have ≥ 40% and < 60% similarity.

 10 that have ≥ 20% and < 40% similarity.

 Aims: 

 Compare time to MRSH-v2

 Evaluate effectiveness of finding planted files.

22



Experiment #3: Results

MRSH-v2
similarity

Files 
planted

Files 
found

Similar 
recall

80%-100% 10 10 100%

60%-79% 10 10 100%

40%-59% 10 10 100%

20%-39% 10 8 80%

Overall 40 38 95%

23

Time to search for planted evidence.
(including pairwise comparisons)

Running time (4,000 leaves):
• MRSH-v2: 2,592 seconds.
• HBFT: 1,182 seconds.



Conclusions

 More leaf nodes lead to fewer pairwise comparisons.

 min_run of 4 looks like a reasonable value.

 If corpora are different sizes, use the tree to represent the smaller one.

 Final experiment: all files with ≥ 20% similarity were found, with time 
reduction of 54%.

 Likely to scale better than existing approach using pairwise comparisons.

24



DAVID.LILLIS@UCD.IE

WWW.FORENSICSANDSECURITY.COM

@FORSECRESEARCH

25


