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Passwords have been and still remain the most common method of authentication in computer systems.
These systems are therefore privileged targets of attackers, and the number of data breaches in the last
few years attests to that. A detailed analysis of such data can provide insight on password trends and
patterns users follow when they create a password. To this end, this paper presents the largest and most
comprehensive analysis of real-world passwords to date e associated with over 3.9 billion accounts from
Have I Been Pwned. This analysis includes statistics on use and most common patterns found in pass-
words and innovates with a breakdown of the constituent fragments that make each password.
Furthermore, a classification of these fragments according to their semantic meaning, provides insight on
the role of context in password selection. Finally, we provide an in-depth analysis on the guessability of
these real-world passwords.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Passwords are everywhere. The average number of password-
protected services and devices per user is a difficult figure to esti-
mate. Often, the users themselves fail at evaluating their own
digital environment/footprint. The only certainty is that this
number is growing over time as the world is experiencing its
ongoing digital transformation (Kanta et al., 2020a). This societal
phenomenon is mostly technologically driven and is safe to assume
will continue into the future with autonomous driving, remote
surgery, smart homes, etc.

As much as a password is the barrier for attackers to breach a
critical system, it is equally a hindrance for law enforcement con-
ducting their investigations. In the context of digital forensic
investigation, the use of password protected accounts and devices
can present a hurdle for their lawful analysis under warrant (Thing
and Ying, 2009). The prevalence of password protected encrypted
storage coupled with increasingly stringent password policies can
result in cases being significantly held up in the best case or hitting
a dead end in the worse case. The mainstream desktop computer
earch Group, University Col-

. Kanta).

Ltd. This is an open access article u
and mobile operating systems offer built-in password protected
encryption of their storage volumes (Sayakkara et al., 2019). Such
feature is enabled by default in many cases without user configu-
ration (Du et al., 2020).

Law enforcement agencies throughout the world are struggling
to keep up with the demand for digital forensic investigation e

with multi-year, case hindering backlogs becoming commonplace
(Lillis et al., 2016). When time is of the essence both from a time-
sensitive case (e.g., child abuse investigation, human trafficking,
etc.) and investigative efficacy perspective, the decisions made on
what resources to allocate to each digital investigation can be
crucial (Kanta et al., 2020b). Attempting to brute force a password
for each account, encrypted file or storage volume can use a large
amount of resources with no guarantee of success in any reasonable
time frame (Du et al., 2020). In order to enable digital investigators
to make informed decisions on the likelihood of success for this
approach, actionable statistics are needed based on a significantly
large dataset of real-world passwords. This forms the motivation
for the work presented in this paper.
1.1. Contribution of this work

In order to address this consideration, we have conducted the
largest password analysis to date considering a list of 555,278,657
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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unique passwords from the Have I Been Pwned?1 version 5 dataset
(HIBP_v5). Of these, 515,680,539 passwords were reverse engi-
neered correlating to 3,951,907,330 real-world accounts e with
password reuse accounting for the disparity in these numbers (i.e.,
commonly used passwords both between different accounts and
different users). The contribution of this work can be summarized
as follows:

1. The largest and most comprehensive analysis of real-world
passwords conducted to date. The HIBP_v5 dataset was used
to extract the underlying statistics of the constituent passwords,
showcasing password tendencies of real users.

2. An analysis of the passwords’ pattern of construction after
splitting the passwords into meaningful component fragments.
This analysis reveals that some semantic classes are more
common than others, underlining the potential importance of
user context when they select their passwords.

3. Finally, the passwords are clustered based on their presumed
strength and their crackability is assessed. The analysis iden-
tifies the strongest class of passwords and under certain con-
ditions, it is demonstrated that some of these should still be
considered weak.

2. Background

Password strength evaluation is of particular interest in the last
few decades. It has been done through the analysis of existing
leaked datasets or through studies where participants answer
questions about their password habits (Brown et al., 2004;
Bonneau, 2012; Mazurek et al., 2013; Galbally et al., 2017; Golla and
Dürmuth, 2018).

2.1. Influencing factors on password selection

According tomany studies, a person’s background contributes to
their password choices (Kanta et al., 2020a). In a survey of college
students about their password habits, Brown et al. (Brown et al.
(2004) showed in 2004 that most students use personal informa-
tion in their password selection, such as their own birthdays and
names as well as those of their friends and relatives. In fact,
knowing the email and username associated with an account can
facilitate retrieving the password of that account (Ji et al., 2015).
This is further reinforced by looking at authentication error
correction schemes, where Chen et al. (2019) reported that on
average targeted error correction is twice as successful as non-
targeted error correction. Furthermore, a user’s beliefs and often
misconceptions about what makes a password secure can also
explain the rationale behind their password choices. In 2015, Ur
et al. (2015) conducted a study where participants had to choose
passwords for specific websites and they noted that many users
erroneously believed that words that are difficult to spell are harder
to crack, or that adding a ‘!’ at the end of a passwords adds to its
security.

Another factor that influences password choices of users is de-
mographics factors including age, gender and nationality. In 2012,
Bonneau (2012) analyzed a corpus of 70 million passwords and
looked at whether the guessability of these passwords changed
when specific dictionaries targeting each demographic were cho-
sen. It was observed that the success rate of a guessing attack with
1000 guesses, when a specified-to-a-particular-demographic dic-
tionary was chosen performed slightly better in categories that had
to do with age, language and service usage than a generic
1 https://haveibeenpwned.com.
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dictionary. This was reinforced by Ji et al. (2015), who found that
the closer the dictionary is semantically to the target, the higher the
success of cracking the password of the target. The role of de-
mographics in password choices is also supported byMazurek et al.
(2013), who in 2013 measured the password guessability of a uni-
versity. Some of the findings of this study show that overall men
created slightly stronger passwords than women. Additionally,
computer science students were found to have some of the stron-
gest passwords, while business students had some of the weakest.
Wang et al. (2017) looked at 12 datasets from specific communities
and observed that the type of website the password came from,
played a role in password choices. For example jesus1 was one of
the most popular passwords for two of the websites that were
Christian focused.

Another deciding factor for a user’s choice of password is the
password policy in place. It was observed that more stringent
password policies resulted in users spending more time choosing a
password and using more special characters (Ur et al., 2012) or
being more often unsuccessful in creating a suitable password in
the first try (Komanduri et al., 2011). On the other hand, according
to an examination of existing password policies length re-
quirements by Shay et al. (2016), length and usability are not always
inversely proportional. That was also verified by Shay et al. (2012),
who demonstrated that the use of system generated 3- and 4-word
passphrases did not perform better than system generated pass-
words. In fact, the rate at which users forgot the passphrases, or
needed to write them down was similar to passwords, but the er-
rors they made while entering the passwords were greater. In the
case of Bonneau and Shutova (Bonneau et al., 2012), where users
chose the passphrases, the distribution followed that of natural
language, which increased their guessability compared to
randomly assembled passphrases.

2.2. The case of the non-native English users

Many examples of password strength analysis are focused on
that of native English speakers. When it comes to password choices
and password strength, there are differences between English and
non English speaking users. In an analysis of honeywords in 2018,
Wang et al. (2018) found that 36.95% to 51.43% of Chinese speaking
users use their personal information to generate passwords, while
this figure ranges from 12.76% to 29.94% for English speaking users.
Furthermore, Chinese speaking users tend to use numbers in gen-
eral and dates in particular, more often than English speaking users
(Wang et al., 2019). It has also been found that password strength
metrics often over inflate the perceived complexity when pass-
words are composed of non-English words and fragments (AlSabah
et al., 2018). Finally, Wang et al. (2019) also noticed that while
Chinese passwords are more vulnerable on online attacks than
their English counterparts, the Chinese passwords that are left, take
longer to crack on average, as the number of guesses increases.

2.3. Password guessing tools and techniques

Many commercial, free and open-source passwords guessing
tools are currently available, e.g., Passware,2 Elcomsoft,3 John-the-
Ripper4 and Hashcat.5 Those tools simultaneously leverage both the
Central Processing Unit (CPU) and Graphical Processing Unit (GPU)
to increase performance. There are also Field Programmable Gate
3 https://www.elcomsoft.fr/eprb.html.
4 https://www.openwall.com/john/.
5 https://hashcat.net/.
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Array (FPGA) approaches, such as SciEngines dedicated hardware.6

However, FPGAs are typically a more suitable choice to evaluate
specific functions, especially when power consumption is an issue
(Gaspar et al., 2014).

The range of password guessing techniques is relatively wide.
Ranging from the most basic technique, typically an exhaustive
search, to complex deep learning techniques using Generative
Adversarial Networks (GANs), e.g., PassGan (Hitaj et al., 2019). The
standard approach remains the dictionary approach combinedwith
mangling rules. In this technique, a list of common password can-
didates, the dictionary, is used together with a set of password
modification functions. These functions attempt to mimic typical
human behavior, such as placing a digit at the end of the password,
capitalizing the first letter, replacing ‘a’ characters with ‘@’ symbols,
etc. Most modern approaches are machine-learning based, such as
PCFG (Weir et al., 2009) and OMEN (Dürmuth et al., 2015). These
tools leverage the availability of large datasets of human-chosen
passwords.

Password cracking contests are also often organized helping to
better grasp the capacity of experts in retrieving passwords; the
most famous of which being the Crack Me If You Can Contest7 from
KoreLogic held during DefCon.

3. Methodology

This section specifies the origin of the dataset and the steps we
have taken to clean it. In a nutshell, we gathered plaintext pass-
words fromHashes.org and from the CynosurePrime team. Thenwe
identified and removed non human-chosen passwords. We provide
a more detailed explanation in what follows.

3.1. Dataset origin

The source dataset used for this analysis is theHave I been Pwned
password dataset. The original website was created by Troy Hunt, a
web security expert, to help users detect if their email address(es)
appear in data breaches. In 2017, Hunt launched an API to check
whether a given password appeared in a previously leaked data-
base. The objective behind this tool is to reduce the password reuse
phenomenon and prevent credential stuffing attacks (Pearman
et al., 2017) by implementing a searchable password blacklist, as
strongly encouraged by the latest NIST directive (Grassi et al., 2017).
All the passwords fromvarious breaches have been concatenated in
a single dataset and made publicly available for companies and
institutions to implement their own black listing of passwords
independently. Institutional ethical review for the work presented
in this paper has been approved by University College Dublin.

At the time this research had been conducted, five incremental
versions of this list had been released since 2017, with each newer
version containing more passwords, updated counts of each pass-
word’s occurrence and the removal of “garbage” passwords (e.g.,
badly encoded, duplicates, etc.). The dataset does not provide any
additional information about each password such as the breach it
came from nor the date discovered. However, it can be assumed
that the entries of the dataset come from the data leaks listed on
the HIBP website. The date spread of the total number of accounts
compromised by those data breaches is displayed in Fig. 1.

The total number of accounts compromised in these breaches is
over 9.4 billion. However, HIBP_v5 does not contain this number of
passwords. This can be attributed to several explanations. It is
known that there was no password associated with over 2.8 billion
6 https://www.sciengines.com/technology-platform/sciengines-hardware/.
7 https://contest-2019.korelogic.com/.
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of the breached accounts. Furthermore, as declared by Troy Hunt,
the list is composed only of passwords that were initially gathered
in plain text while the website can still list the username as
breached when the password is not stored in clear. This composi-
tion is not without consequence on the results of our analysis for
the two following reasons. Firstly, The strongest passwords can be
missing from the list obtained by Troy Hunt if the original source
was not in clear text. Secondly, if the passwords were stored in
clear, then the strongest password are contained in the related leak.
However, the corresponding service/website was not following
basic security recommendations which can easily lead one to
believe that little attention has also been given to password secu-
rity. We still believe that, thanks to the large size of the list, our
analysis is relevant for an overwhelming proportion of accounts. It
is furthermore particularly challenging to obtain a dataset of strong
password to complement our analysis to bridge this bias.

3.2. Retrieving the plaintext

In order to conduct a statistical analysis of the passwords from
the HIBP_v5 dataset, the passwords are first required to be in clear
text. The Hashes.org website8 contains lists of clear text values for
many password datasets e including the five versions of the HIBP
dataset. The recovery ratio from the HIBP_v5 hash list is above
99.2%. In 2017, the CynosurePrime team, a password research col-
lective, managed to recover almost all passwords from the first
version of the HIBP list,9 claiming a final recovery ratio of 99.9999%.
One of the purposes of their work being research, their list of
recovered clear text passwords was shared to the researchers in
this work. CynosurePrime initially focused on HIBP_v1, and there-
fore their list contains passwords from this list removed from later
versions. Those passwords were removed essentially because they
were somehow corrupted (e.g., badly encoded), duplicates, or not
generated by humans. The CynosurePrime list wasmergedwith the
one collected from hashes.org to enrich our dataset with passwords
from the later versions of HIBP. While this list contains more than
99% of the passwords of HIBP_v5, it should be mentioned that the
small percentage of passwords that has not been included has not
been recovered by either the CynosurePrime team, or the Hashes.
org team. These passwords can be assumed to be some of the
strongest in HIBP, which is something to be taken into account.

3.3. Cleaning the dataset

We initially removed from the obtained dataset all the pass-
words encoded in hexadecimal format, corresponding to approxi-
mately 35million passwords. While being valid passwords, the tool
used for the basic analysis would not handle them properly.
Further, a majority of these hex encoded passwords consisted of
inputs which were wrongly encoded or handled on the HIBP
dataset creation.

During our analysis, one unusual pattern was identified with a
significantly high frequency. The “word” fbobh was discovered in
the top 10 of used words. This is not a common word found in
searching regular sources nor is it a common pattern, e.g., a
keyboard walk - letters that are next to each other on a keyboard.
Overall, it was identified that approximately 3.6 million unique
passwords from HIBP_v5 have the structure “fbobh_XXXX”, where
“XXXX” represents four random characters including lowercase,
numbers and specials, but not uppercase. These passwords can be
8 https://hashes.org/.
9 https://blog.cynosureprime.com/2017/08/320-million-hashes-exposed.html?

m¼1.
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Fig. 1. Number of breached accounts listed in have I been Pwned.

A. Kanta, S. Coray, I. Coisel et al. Forensic Science International: Digital Investigation 37 (2021) 301186
attributed to the MySpace data breach and are not human gener-
ated. Therefore, these passwords were removed from our analysis.

The clear text list used for the remainder of this work is there-
fore composed of 515,680,539 unique passwords. Considering the
count value from the HIBP_v5 for each password’s occurrence in
data breaches, this dataset represents a total of 3,951,907,330
passwords. Table 1 shows the 20 most popular passwords found in
this dataset along with their percentage of the total accounts
associated with each. Many of these passwords feature heavily on
most common or worst password lists. As can be seen, sequences of
numbers and keyboardwalks are themost popular choices found in
the dataset.

4. Basic analysis of the dataset

The objective of the further basic analysis in this section is to
present global characteristics about the passwords including the
type of alphabet used and the most frequent patterns. The Pass-
word Analysis and Cracking Kit (PACK)10 was used to analyze the
HIBP_v5 dataset. PACK provides several analysis tools, but the
Table 1
Top 20 passwords in HIBP_v5.

Password % of Total Accounts

123456 0.596%
123456789 0.197%
Qwerty 0.099%
password 0.094%
111111 0.079%
12345678 0.074%
abc123 0.072%
1234567 0.064%
password1 0.061%
12345 0.060%
1234567890 0.057%
123123 0.056%
000000 0.050%
iloveyou 0.041%
1234 0.033%
1q2w3e4r5t 0.030%
qwertyuiop 0.028%
123 0.026%
monkey 0.025%
Dragon 0.025%

10 https://github.com/iphelix/pack.
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included statsgen script provides the functionality needed to
perform this analysis.

4.1. Length distribution

Fig. 2 provides an overview of the most common lengths of
unique passwords in the dataset, i.e., the aforementioned
515,680,539 passwords. One statistic that immediately stands out is
that more than 30% of the unique passwords from HIBP_v5 are
eight characters long. A highly probable explanation for this is that
most password guidelines and policies specify minimum length
requirements, such as the 8 characters minimum in the NIST
recommendation (Grassi et al., 2017). The second most frequent
length is ten corresponding to 17% of the passwords. The overall
password length ranges from 1 to 449 characters, yet 84% of the
passwords have a length that falls into the 6e12 character range.

4.2. Character sets usage

There are typically four classes of characters considered in the
password analysis community; lowercase, uppercase, numbers,
and special characters. An analysis of the character type composi-
tion of the unique HIBP_v5 passwords can be seen in Fig. 3. PACK
analyses the composition of passwords and classifies them ac-
cording to the type of character set used. For example, a password is
associated with the category loweralphaspecialnum when it con-
tains lowercase, special characters and numbers, e.g., pa$$w0rd,
no matter what the order or frequency of appearance of the
component characters are. A description of each of the categories
used by PACK is shown in Table 2. Using this classification, PACK
outputs the count of passwords in each category. Fig. 3 shows the
distribution of these categories, where in other the lowest repre-
sented categories are combined. As can be seen in the figure, 46% of
the passwords are composed of a mix of lowercase characters and
Fig. 2. Most common Password lengths.

https://github.com/iphelix/pack


Fig. 3. Occurrence of character categories.

Fig. 4. Simple masks.
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numbers. The second and third largest classes correspond to
passwords composed of only lowercase (24%) or only numbers (8%)
respectively. One notable observation from this analysis, is that
over 75% of passwords from the dataset contain neither special nor
uppercase characters. This is not such an unexpected outcome as
most password policies require at least 2 different character sets to
be present in a password (Florêncio and Herley, 2010).

4.3. Pattern analysis

The analysis can be further refined as it focuses on character sets
without considering the internal password structure. For example,
the category loweralphanum contains passwords like 12password,
password12, and pass12word. A more refined classification, where
the internal order is considered, would separate these into three
different categories. This further classification is important because
the approach to guess these passwords will be different. Following
the vocabulary used in password guessing techniques, these in-
ternal password structures are called “masks”. Therefore, for the
above mentioned examples, the corresponding masks would be
digitstring, stringdigit and stringdigitstring, respectively. The 15 most
common masks from the HIBP_v5 dataset are shown in Fig. 4. The
most common mask is stringdigit, meaning that the passwords of
this category are composed of a string (lowercase and/or upper-
case) immediately followed by one or more numbers, e.g.,
Table 2
Types of patterns.

Pattern Meaning

loweralpha Lowercase only
upperalpha Uppercase only
mixedalpha Lower and uppercase only
numeric Numbers only
loweralphanum Lowercase and numbers
upperalphanum Uppercase and numbers
mixedalphanum Lower and uppercase and numbe
special Special characters only
loweralphaspecial Lowercase and special characters
upperalphaspecial Uppercase and special characters
specialnum Special characters and numbers o
mixedalphaspecial Lower and uppercase and specia
loweralphaspecialnum Lowercase, special characters and
upperalphaspecialnum Uppercase, special characters and
all Lower and uppercase, special cha

5

paSSword123). As determined by Tatlı (2015), users typically pick
an alphanumerical string, commonly a word or a name, and add
numbers at the end to fulfill the length and character sets
requirement of the enforced password policy. The next most
common masks are string, digit and digitstring. These four masks
combined represent over 75% of the passwords.

5. Results of advanced analysis

The previous Section provides a basic overview of the dataset’s
composition. In this section, this analysis is extended with the us-
age of the �Oðinn Framework (Coray, 2019) that we have adapted
and enriched particularly for this advanced analysis.

5.1. �Oðinn framework

�Oðinn is a tool that can split passwords into their basic frag-
ments and find their semantic meaning. It can also create password
candidates out of multiple fragments and recover longer and more
complex passwords, that other state-of-the-art password guessers
failed to recover. It has a modular architecture facilitating the
addition and adaptation of its analysis functionality. This facilitates
pipelined workflows that consist of multiple modules. This enables
the execution of multiple steps first, before the final analysis is
performed, e.g., split passwords into fragments / classify frag-
ments / aggregate the classes. The two main components used in
this work are for fragmentation and classification.

5.1.1. Fragmentation
The goal of fragmentation in �Oðinn is to split a password into

meaningful fragments, such as its component words, e.g., ilovemom
should be split into three fragments. This fragmentation is achieved
in two steps. Firstly, the passwords are decomposed according to
the three basic character sets, namely letters, numbers and specials.
Example(s)

password

PASSWORD

paSSwoRD

123456

password12, pass12word

PASSWORD12, PASS12WORD

rs pasSWord12, PASS12word

%.&;#

password!, pa$$word

PASSWORD!, PA$$WORD

nly 123456!, 123!456

l characters Password!, !Pa$$word

numbers password1!, !pa$$1word

numbers PASSWORD1!, PA$$1WORD!

racters and numbers passWORD1!, !pA$$1woRd
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Subsequently, the letter fragments are split into further fragments
when appropriate to do so. This second step is performed using
SymSpellPy,11 a Python implementation of SymSpell,12 which is
one of the most efficient spelling correction algorithms (Garbe,
2017).

As a ground truth for splitting text into single words, SymSpell
needs a dataset of words with their corresponding frequency
counts. This dataset has to be seen as a vocabulary list and not as a
set of password candidates. The SymSpellPy library comes with a
small English dictionary with counts as default. Such approach is
very efficient for tasks such as auto-correction modules or other
natural language processing tasks. However passwords are likely to
contain foreign expressions, purposely mistyped words, popular
culture references/characters, celebrities, or slang words which are
missing from standard language datasets and therefore using
classical dictionaries would fail to properly fragment passwords. An
ideal solution relies on the existence of a dataset composed of
fragments properly extracted from real passwords which, to the
best of our knowledge, does not exist. We have therefore produced
our own dataset, extracting words from 3, 937, 684, 877 Reddit
comments.13 This source was chosen for two reasons: 1) the com-
ments contain slang words and common expressions used on the
internet, and 2) these comments are written in several languages
resulting in a multilingual dictionary.
5.1.2. Fragment classification
As there can be many different types of fragments composing

real-world passwords, �Oðinn provides different ways of classifying
them:

C WordNet e To classify normal English words, WordNet14

provides a synset (a set of synonyms relating to a single
given word). As WordNet is built hierarchically, the tree can
be climbed to get synsets with a broader meaning for the
classified word.

C Functions e Functions check if a given input matches the
patterns defined within them, e.g., years or dates.

C Dictionaries e �Oðinn contains a collection of dictionaries,
each of them listingwords of a specific class, e.g., cities. These
lists are mostly hand-crafted and refined.

Tests with �Oðinn have shown that in most cases, WordNet is
classifying words correctly. However, it quickly reaches its limit. For
example, simple typos or slang words are not correctly classified by
WordNet, which is only looking for exact matches. This is an issue
with passwords, as it is common to use slang words and phrases,
e.g., iluvmymom. To compensate for this insufficient classification,
enriching the dataset of words used with the non-classified frag-
ments was a focus of this work. GloVe (Pennington et al., 2014) was
used to automate this process with its Common Crawl 42B 300d, a
pre-trained model in English for GloVe.15 The process used can be
summarized as follows. A proximity score between each non-
classified fragment and the previously defined categories is
computed. This proximity score is the Euclidean distance between
the embeddings of those words in GloVe. The fragment is then
added to the categories for which the distance is smaller than given
threshold. This process was repeated as some fragments could
remain unclassified after one pass but be classified in the second
11 https://github.com/mammothb/symspellpy.
12 https://github.com/wolfgarbe/SymSpell.
13 https://files.pushshift.io/reddit/comments/.
14 https://wordnet.princeton.edu/.
15 http://nlp.stanford.edu/data/glove.42B.300d.zip.
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pass thanks to the previous extension of the dataset of words. Many
fragments were still not classified using this process; mainly
random strings, typos and slang. This is because they do not have a
representation in the Common Crawl and therefore cannot be
compared to the categories. Once the classification is achieved,
�Oðinn produces the frequency counts for all the observed combi-
nation of classes, e.g., the number of times passwords are composed
of a name followed by a year. As one of motivations of this workwas
to analyze in more detail those classes and their combinations,
�Oðinnwas configured to save the classification of each password in
addition to the aggregated data.
5.2. Analysis on password fragments

At this point, two cases were possible for the advanced analysis:
either analyzing the unique passwords, or analyzing the passwords
considering the number of occurrences in the dataset. The latter
option better maps the human behavior and therefore the below
analysis relies on the 3.9 billion non-unique passwords of HIBP_v5.
�Oðinn produced 1,575,290,376 fragments out of the unique
passwords in HIBP_v5, the breakdown of which can be seen in
Table 3. The three lists, namely letters, numbers and special char-
acters, were further processed in order to see the most common
fragments of each category. A full table of the Top 50 most frequent
fragments in all three categories can be found in Table 4. We have
removed from the letter fragments those classified by �Oðinn as
single and double letters without meaning, e.g., “xf” is removed but
“it” remains). a and i, which were respectively classified as an
article and a pronoun, hold the top spots. As they are frequently
encountered in the “Top Worst Passwords” lists verbatim or as
parts of a password, qwerty, password and love are unsurpris-
ingly rounding out the top 5 (Rawlings, 2019). In the top 50 there
are some fragments that consist of phrases, such as iloveyou. The
reason this is not broken down further is that, as mentioned in
Section 5.1.1, the training of �Oðinnwas donewith Reddit comments
and this phrase appeared verbatim there and is therefore consid-
ered a single word. Furthermore, we notice keyboard walks such as
qwerty, qwe, qaz are featuring prominently in the top 50 for both
word and number fragments. The same holds true for the top 50
number fragments, where 3 out of the top 5 most frequent frag-
ments are sequences of numbers. Furthermore, single digits, 1, 2, 3,
double digits 12, 11, 13, and number repetitions 111111, 000000,
are encountered in the top 50 number fragments. When it comes to
special characters, the top 15 most encountered special characters
are single, followed mostly by patterns of repetition. It is worthy to
mention that the order of magnitude for the top 50 special char-
acters is one order smaller than the top 50 letters and numbers.
This corroborates the suggestion that users prefer alphanumeric
characters and tend to avoid those that requires multiple keys to
type, as is often the case with special characters (Bonneau, 2012).
Looking further down at the number-based fragments, some
noteworthy fragments are found in the top 500. When it comes to
numbers we noticed many four digit numbers in the top 500
number fragments falling within the 1900 to 2020 range, i.e.,
common years. The first appearance of a four digit number that is
presumably a year is 2010 at no. 56 and subsequently an overall of
Table 3
Breakdown of password fragments per category.

letters 1, 074, 196, 225

numbers 439, 727, 373

special 61, 366, 778

total 1, 575, 290, 376

https://github.com/mammothb/symspellpy
https://github.com/wolfgarbe/SymSpell
https://files.pushshift.io/reddit/comments/
https://wordnet.princeton.edu/
http://nlp.stanford.edu/data/glove.42B.300d.zip


Table 4
Top 50 letter, number and special character fragments.

Letter Count Number Count Special Count

a 2.335% 1 8.240% . 0.871%
i 1.168% 123456 5.137% _ 0.666%
qwerty 0.597% 123 2.574% ! 0.469%
password 0.510% 2 2.398% @ 0.334%
love 0.484% 123456789 2.083% e 0.327%
my 0.356% 3 1.788% : 0.140%
abc 0.274% 4 1.578% # 0.105%
to 0.259% 5 1.111% * 0.090%
an 0.259% 12 1.079% $ 0.071%
qwe 0.248% 7 1.029% 0.065%
in 0.238% 0 0.870% & 0.045%
the 0.228% 8 0.812% þ 0.042%
qaz 0.223% 6 0.810% ? 0.037%
iloveyou 0.221% 12345 0.764% , 0.035%
ws 0.217% 9 0.761% / 0.031%
as 0.209% 1234 0.664% !! 0.025%
no 0.198% 11 0.599% .: 0.023%
ilove 0.196% 13 0.518% &# 0.022%
by 0.191% 12345678 0.474% ¼ 0.021%
man 0.190% 01 0.430% ; 0.018%
baby 0.178% 10 0.425% .. 0.017%
on 0.176% 1234567890 0.418% ’ 0.016%
it 0.156% 111111 0.411% % 0.014%
we 0.145% 22 0.390% < 0.014%
go 0.145% 23 0.375% ( 0.011%
he 0.145% 123123 0.365% [ 0.011%
asd 0.134% 1234567 0.360% ) 0.011%
sexy 0.131% 69 0.331% ** 0.010%
you 0.128% 21 0.321% … 0.010%
boy 0.126% 14 0.284% :, 0.009%
of 0.124% 15 0.248% ‘ 0.009%
qa 0.117% 09 0.248% $$ 0.008%
girl 0.116% 08 0.236% __ 0.007%
fuckyou 0.114% 07 0.224% !!! 0.007%
july 0.113% 99 0.224% @@ 0.006%
angel 0.111% 24 0.222% e 0.005%
ma 0.109% 88 0.221% ., 0.005%
march 0.107% 16 0.212% ∧ 0.005%
dog 0.106% 18 0.209% ~ 0.004%
at 0.105% 000000 0.207% !@ 0.004%
big 0.103% 17 0.206% ! ~! 0.004%
monkey 0.102% 00 0.204% > 0.004%
one 0.101% 19 0.202% *** 0.004%
alex 0.099% 77 0.193% !@# 0.004%
red 0.095% 33 0.190% ] 0.003%
us 0.094% 20 0.187% ?? 0.003%
qwer 0.094% 123321 0.183% þþ 0.003%
qwertyuiop 0.094% 25 0.181% ” 0.003%
dragon 0.092% 666 0.174% ??? 0.003%
life 0.091% 06 0.170% ¼¼ 0.002%
shark 0.090% 89 0.150% ***** 0.002%

Table 5
Most frequent classes of component password fragments. The count represents how
many passwords in which this class occurred at least once.

Count Percentage Class

1,223,930,168 30.97% number
674,454,756 17.07% common-number
338,857,959 8.57% year
297,403,194 7.53% masculine_name
266,976,738 6.76% feminine_name
179,058,386 4.53% name
109,891,541 2.78% article
102,376,618 2.59% pronouns
97,630,848 2.47% city
92,259,083 2.33% special
81,998,629 2.07% keyboard
61,214,229 1.55% prepositions
57,435,482 1.45% animal
50,064,712 1.27% connector
49,162,058 1.24% family
45,663,992 1.16% computers
40,156,119 1.02% people
37,866,704 0.96% person.n.01
33,855,125 0.86% swear
29,082,262 0.74% food
27,575,938 0.70% colours
25,638,436 0.65% emotions
23,799,390 0.60% sports
22,868,852 0.58% love
20,607,713 0.52% negative

Table 6
Most Frequent Password Fragment Combinations. x Represents Fragments That
Were Not Classified.

Count Percentage Combination

437,959,119 11.08% common-number
432,721,719 10.95% number
48,306,129 1.22% feminine_name
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37 four digit numbers between 1970 and 2010 appear in the top
200 alone. This leads us to believe that users often choose memo-
rable patterns even for the number portion of their passwords like
year of birth or other important dates. In what concerns special-
based fragments, most of them are repetitions of the same char-
acter like “!!” at rank 16. Some meaningful structure are still pre-
sent in the top 500 in the form of emojis, such as “:)” at rank 65 or
“∧_∧” at rank 198.
45,713,052 1.16% masculine_name þ number
45,344,781 1.15% masculine_name
39,786,125 1.01% feminine_name þ number
33,685,017 0.85% x þ year
27,958,256 0.71% feminine_name þ digit
26,308,310 0.67% masculine_name þ digit
25,821,041 0.65% keyboard
24,678,272 0.62% city
23,689,948 0.60% name
21,252,289 0.54% masculine_name þ year
20,815,196 0.53% x þ common-number
5.3. Analysis on classified fragments and passwords

Table 5 lists the most frequent classes of fragments occurring in
the HIBP passwords. The fragments that were not classified at all or
those not semantically meaningful, i.e., char/twochar/threechar,
were filtered from this list. The three first classes are related to
numbers, either generic ones like single digits, common ones (e.g.,
123456 or 1111, etc.), or years. On one hand, this can be explained
7

by the fact thatmany password policies require passwords to contain
more than just letters. On the other hand, numbers are also very
popular in Asian countries, most probably due to the fact that they
can be digitally entered more easily than ideograms, especially on
mobile devices (Wang et al., 2019). The top 25 classes contains
semantically-rich categories such as cities, animals, food and sports
reinforcing the idea that the surrounding context of a person might
influence the choice of the password. However, it is not possible to
affirmwith conviction that this is the case, e.g., the name of a city can
be unrelated to the person who chose it. Identifying the most com-
mon combinations of component passwords classes enables the
analysis of the unique classes. The results are displayed in Table 6.
Similar to the most frequent fragments, numbers and names are
commonly used in combination with other classes. The number-
based passwords are followed by various combinations of female
and male names in combination with appended single digits or
larger numbers.When password policies requiremore than one type
of character, users might consider “padding” their passwords with
special symbols and/or numbers, like years, at the end in order to
fulfill the length requirement. Furthermore, keyboard walks and
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cities are also popular choices.

6. Strength analysis

6.1. Strength classification

One of the most useful characteristics about passwords is their
strength. Users are probably not always concerned in having strong
and safe passwords or simply not aware of the consequences of
having a weak password. This hypothesis is supported by the
massive use, and re-use, of weak passwords. However, the strength
of the password becomes crucial when it is about protecting critical
service, e.g., bank accounts or the security of a large infrastructure.
To this matter, password metrics are often put in place to ensure a
minimum strength of the password. Themost spread one is the one
proposed in 2012, and updated in 2017 (Grassi et al., 2017), by NIST
recommending a minimum of 8 characters including lowercase,
uppercase, special and digit. However, this approach has shown its
limits with time and attackers have adapted their attacks to mimic
the typical patterns followed by humans in general. A plethora of
other metrics have emerged each of them being based on different
heuristics and methods to assess the strength of passwords.
(Galbally et al., 2017) and (Golla and Dürmuth, 2018) have proposed
a comparison of those metrics. While the method proposed in
(Galbally et al., 2017) is interesting because it provides different
evaluation criteria for each password and therefore better under-
standing of why a password is strong or weak, the proposed
implementation is not fast enough to analyze more than 500
million passwords in a timely manner. The best password metric
according to (Golla and Dürmuth, 2018) is based on the HIBP API
and therefore it does not seem at all suitable to us to assess a
dataset using an approach based exactly on such dataset. The
common point in these two articles is that the zxcvbn password
strength metric, originally deployed in the Dropbox service, pro-
vide good results. We therefore used the python implementation to
analyze the 500 million unique passwords from our dataset. This
metric attributes an integer score between 0 and 4 to each pass-
word according to strength, with passwords in class 0 being the
weakest and those in class 4 the strongest. The division of pass-
words among those classes is displayed in Table 7.

6.2. Hardware consideration

It is essential to include an evaluation on the hardware needed
in digital forensic laboratories tomake password cracking viable. As
previously mentioned, passwords are predominantly stored in a
hashed/salted hash format. The hash function employed is there-
fore a security parameter in case of a data breach. Indeed, if the
hash function is quick to evaluate, an attacker will have the capacity
to evaluate more candidates than if the function is slow. The MD5
hash function has been widely used to store passwords and even
though it is deprecated, it is still commonly used in online services.
A single gaming graphics card, a Nvidia 2080 Ti, is able to evaluate
50 � 109 password candidates per second. In order to better visu-
alize these figures, a single 2080 Ti can fully evaluate all possible
MD5 passwords up to length 8 considering an alphabet of 95
characters (26 lowercase, 26 uppercase, 10 digit, and 33 special
characters) in less than 2 days. Considering the BCRYPT hash
Table 7
Percentage of Unique Passwords per zxcvbn Class.

Score 0 1 2 3 4

Percentage 0.04% 14.7% 47.3% 26% 12%
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function, specifically designed to be slow on graphic cards, only up
to five characters can be brute forced in practical time, as the card
can evaluate approximately 25,000 passwords per second.
6.3. Password guessability

The analysis of the guessability of passwords is outlined below
for two scenarios, namely a fast and a slow hash function. For this
purpose, the length of passwords in each of those classes has been
measured. Fig. 5 shows the proportion of passwords of a given
length for each of the classes produced by zxcvbn. In the case of a
fast hash function, passwords belonging to class 2 and below can be
recovered by an exhaustive search and should therefore be
considered as really weak.

zxcvbn provides, together with the score, an approximation of
the number of guesses an adversary would need to guess a pass-
word. Based on this figure, a password belonging to class 3 could be
recovered using a single 2080 Ti graphics card in a time frame of
approximately 5 days in the case of a slow hash function. Therefore,
a digital investigator targeting a single password will manage to
retrieve it. While this figure is indicative, it reveals that passwords
in class 3 and below should be considered weak, especially as this
time frame is only considering the use of a single graphics card.
Adding additional graphics card will effectually reduce the time
linearly. Class 4 passwords, at a first glance, are more secure. The
minimum length of these passwords is 11 and 75% of those pass-
words have a length between 11 and 15. Based on the results from
�Oðinn, those passwords are composed of more fragments than in
average, with 4.4 fragments for class 4 passwords versus 2.1 frag-
ments for all passwords in HIBP_v5. According to the number of
guesses required, which has an average of 5.8 � 1024, passwords in
this class are more resistant to classical attacks e even considering
a fast hash function. However, 42% of these passwords are solely
composed of lowercase characters and numbers. If prior knowledge
about a given password is known, such as frequent used pattern(s)
derived from other passwords of the same user, specific targeted
attacks become possible. We highlight below the time required to
fully explored the most common patterns of the password from
class 4 considering a fast hash function:

15 digits - 11% of the passwords - space fully explored within a
day in case of MD5. In the case of BCRYPT, it would take 1268.3
years considering a 2080Ti NVIDIA GPU. 12 lowercase - 2% of the
passwords - space fully explored in approximately 22 days in case
of MD5 and in 120,961 years in case of BCRYPT. 11 lowercase - 2% of
the passwords - space fully explored within a day in case of MD5
and 4655.4 years in case of BCRYPT.

Exhaustive search is nevertheless not the recommended
approach to recover strong passwords. These figures serve to
illustrate that even passwords considered as secure can be recov-
ered when prior knowledge is available. To reinforce this idea, we
have extracted the advanced analysis results for the passwords of
this specific class. Table 8 shows for the 10 most used types of
Fig. 5. Password Length Distribution within zxcvbn Score Classes.



Table 8
Comparison of the most frequent classes of password fragments between all the
passwords and those from Class4.

Class All Passwords Class 4 Passwords

Number 30.97% 49.95%
common-number 17.07% 5.03%
Year 8.57% 14.8%
masculine_name 7.53% 8.34%
feminine_name 6.76% 7.41%
Name 4.53% 8.75%
Article 2.78% 7.05%
pronouns 2.59% 6.14%
City 2.47% 2.24%
Special 2.33% 12.73%

Table 9
Manga related passwords in mangatraders.com.

Total Manga related

Top 100 Passwords 41,821 (4.76%) 15,758 (1.79%)
Top 100 Base Words 45,206 (5.15%) 28,783 (3.29%)
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fragment how often they appear in all passwords compared to class
4. As rightly recommended by strong password policies, the num-
ber of occurrences of number-based fragment and special-based
fragment is higher for the class 4 passwords. The frequency of
year is higher while the frequency of common-numbers is much
lower, yet this might be due to a weak classification of number-
based fragments. What remains interesting is that names, either
masculine, feminine or proper names, are more present than in the
average password. Other “contextualised” categories remain pre-
sent with mostly minor fluctuations. Two more noticeable differ-
ences are the classes of computer-based words, moving from 1.16%
to 2.02%, and cooking-related words, moving from 0.49% to 0.96%.

Therefore, if passwords belonging to class 4 are in average
longer and composed of more fragments, additional knowledge
about the person whose password they want to retrieve would be
beneficial and could tilt the balance in favor of the attacker.

7. A preliminary analysis

As part of this analysis, and in order to investigate the hypoth-
esis that there is a link between the thematic content of a website
and the password chosen, we decided to look at one specific leak
from hashes.org. The leak we chose came from the website man-
gatraders.com. The leak contains 881,468 entries (with 618,237
unique passwords). We used pipal16 to extract the top 100 pass-
words, as well as the top 100 base words. A base word is defined as
a password where non-alpha characters from the beginning and
end have been removed. Table 9 shows that the top 100 passwords
represent 4.76% of the total number of accounts. From these 41,821
passwords, 15,758 (or 37.6%) are manga related (representing 1.79%
of the total number of accounts). Interestingly, looking at unique
passwords only (and not counting the number of occurrences, 51
out of the top 100 passwords were related to manga. When it
comes to base words, the percentage of manga related base words
is even higher (3.29% of the total and 63.8% of the top 100 base
words).

This reinforces our assumption that users are inspired by the
purpose and thematic content of the website they create their
password for. Of course, a more extensive analysis of how exactly
and to what extent, the thematic content correlates to the pass-
words chosen is warranted but beyond current scope.

8. Conclusion

The analysis presented in this article consists, to our knowledge,
the largest andmost comprehensive analysis on the building blocks
of a password, to date. The aim of it is to give greater insight into
16 https://github.com/digininja/pipal
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password selection of users and highlight password trends when it
comes to context, length, strength and architecture.

The HIBP dataset is composed of various data breaches from
very different sources, yet we see the popularity of some passwords
and construction processes is universal. We also see, that even in
such a diverse dataset as HIBP, contextual trends start to emerge as
fragment categories such as city, year and name are some of the
most popular, suggesting that users very often opt for passwords
that contain familiar models. User interests are also high on the list
of most popular fragments, with sports, food and animals taking
some of the top spots.

On the side of password cracking, the information yielded from
this analysis aims to highlight that when possible, common ap-
proaches should always be conducted first, as they would retrieve
approximately 80% of the passwords, namely those belonging to
class 3 and below. If those approaches fail, the need for contextual
information appears to be essential to continue the recovery pro-
cess, as otherwise, the success rate would be close to zero.

Such additional information must contribute to the drafting of a
targeted wordlist for candidate generation, or driving the way the
candidates should be composed. The most relevant information in
this situation appears to be numbers, such as important dates, in
combination with names, most probably of relatives.

Last but not least, the way this information is used to create
password candidates must always be according to the construction
process followed by the person that is targeted. For this, other
passwords from the same person might suggest probable password
structures.
8.1. Discussion and takeaways

Our analysis of the HIBP dataset decisively shows that clear
trends of contextualisation can be found in passwords. Users use
passwords they easily remember, something that makes them
weak and easier to guess. The over 515 million reversed engineered
passwords from the HIBP dataset produced 3 times as many pass-
word fragments, which shows that there is merit in this approach
and in fact, a deeper analysis of the fragments is warranted. The
new insights provided by password fragments can help inform not
only password cracking but also on the other side of the equation,
password policy creation.

The analysis of the password masks highlighted the most
common combinations of character categories. This can serve to; 1)
inform password policies; and 2) give insight into the most popular
construction processes users follow.

The strength analysis on this password dataset shows that the
majority of passwords remain weak, and easily recovered with an
exhaustive search. Passwords of class 4, which were the strongest,
would still be susceptible to a brute force attack considering a fast
hash function. On the other hand, we showed that with a slow hash
function, it would be a lot more difficult and costly. Therefore,
special attention should be paid to the way the passwords are
stored, because in many cases the hash function will be the only
obstacle in the way of an attacker.

Looking at the contextual information that can be found through
the classification of the fragments, attention should be paid on how
it can be translated to viable password candidates. Such

http://hashes.org
http://mangatraders.com
https://github.com/digininja/pipal
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information is often available through classical means of investi-
gation in the case of law enforcement, and could tilt the balance in
their favour. In the case of an attacker targeting an individual, this
type of information may be found by unlawful means or in some
cases by what the victim themselves have shared online. This is
why it is especially prudent to be mindful of an attacker’s targeted
approach.

But looking at contextual information about passwords can be
both a friend and a foe. Context can be leveraged for a targeted
attack, but it is also what helps people memorize and retrieve their
passwords. Therefore, in password creation it should be used in
conjunction with other strength parameters like length in a long
passphrase. Password meters are a good friend. They may fail to
identify context but some of them are good to recognize language.
Those still give good insights about the strength of the resulting
password, therefore, they can be used to ascertain that a password
based on contextual information can be both memorable and
difficult to crack.

8.2. Future work

In order to refine our analysis, a greater importance in dividing
and classifying numbers is needed. Indeed, those fragments appear
to be the most common ones, yet our analysis is rather limited in
this regard. Letter-based fragments could also be better classified
considering language models dedicated to passwords.

Our preliminary analysis of a manga dataset showed that this is
a valid approach, as about half of the passwords found in the top
100 most used passwords were related to manga. In the future, we
would like to focus on the analysis of such datasets, stemming from
specific communities, to understand if the topic for which the
password is selected also has an influence on the password selec-
tion process. This way, the advantage of these enhanced dictio-
naries, compared to traditional ones can be ascertained and the
value of this approached can be determined. Ultimately, the
consideration of contextual information about the user and/or the
service the password is used for, can be utilised to reduce the search
space during password cracking, by bringing forth password can-
didates to be checked that would otherwise be considered further
down the process or not at all.
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