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Abstract

Passwords have been the prevailing method of authentication since their inception

more than 50 years ago, a trend which has no signs of slowing down in the foresee-

able future. Despite alternative authentication methods being developed later, it is

reasonable to assume that this prevailing authentication method will not fall out of

popularity anytime soon. Passwords are an integral part of the security of digital per-

sons, systems and critical data, and yet, they often remain the weakest entry point

to a digital system. The conundrum has driven both the efforts of system adminis-

trators to nudge users to choose stronger, safer passwords and elevated the sophis-

tication of the password cracking methods chosen by their adversaries. The system

administrator often overcomes the imperfection by skilfully enforcing strong pass-

word policies and dutiful password management on the side of the server. But at

the end, the user behind the password is still responsible for the password’s strength.

A poor choice can have dramatic consequences for the user or even for the service

behind, especially considering critical infrastructure.

A password itself is indeed an extension of its creator and therefore can be ex-

ploited by malicious actors leveraging available contextual information about a target

password creator. On the other hand, law enforcement can benefit from a suspect’s

weak decisions to recover digital content stored in an encrypted format. Generic

password cracking procedures can support law enforcement in this matter – how-

ever, these approaches quickly demonstrate their limitations. Recent research has
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hinted at the influence that context can have on a user during his/her password

selection. This information could be of significant added value when digital investi-

gators need to target a specific user or group of users during a criminal investigation.

The connection between the password and its creator has given rise to advanced

techniques aimed at exploiting user habits for password cracking. Such techniques

are often generic approaches that leverage large datasets of human-created pass-

words. This thesis aims to investigate the hypothesis that bespoke password candi-

date lists, generated based on available contextual information, can positively impact

the password cracking process. For this, a methodology and framework for creating

and assessing custom dictionary wordlists for dictionary-based password cracking

attacks are introduced, with a specific focus on leveraging contextual information.

Furthermore, a detailed explanation of the framework’s implementation is provided,

and the benefits of the approach are demonstrated with the use of test cases. This

work also introduces techniques for optimising the generation of the bespoke dictio-

naries, ranking the password candidates in order to maximise the chance of early

success. The aim of the proposed approach is to support digital forensic investiga-

tors in their criminal investigation – especially when time is of the essence. This ap-

proach achieved very promising improvements over existing, traditional approaches

in isolation – more than 50% improvement in some instances. This result proves that

more targeted approaches can be used in combination with the traditional strategies

to increase the likelihood of success when contextual information is available and

can be exploited.
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Chapter 1

Introduction

Despite known security concerns, passwords still remain the most widely used and

one of the easiest and most adopted methods of authentication. Password-based

authentication is older than modern digital society might realise. It is such an archaic

system yet remains a crucial component of the security of most digital systems

(albeit not necessarily the only one). As password policies become more restrictive

by enforcing the selection of stronger passwords, attacks also become more refined

and sophisticated. Traditional password cracking methods have, in many cases,

become less efficient due to the increase in the computational cost of the underlying

algorithms and the strengthening of the passwords [13].

1.1 Motivation

For the last few decades, research on passwords, their architecture, and the ways

to crack them has been a focal point for researchers. This is with good reason,

since they have been the most popular means of user authentication – and are set

to continue to be so into the foreseeable future. For a lawful digital investigation,

passwords can be the single point that hinders the progress, ultimately resulting

in justice not being served. Therefore, password cracking methods need to be re-

fined and to adapt to the increasing diligence of suspects who choose harder and

stronger passwords. By taking into account the increasing usage of computer gen-

erated passwords, the addition of salts, and the use of slower hashing functions,
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password cracking is increasingly becoming more of an uphill battle. This redoubles

in the context of an investigator trying to gain access to a single account/point of

entry, especially for an online system with a limited number of tries. In this case,

simply brute forcing is out of the question – more sophisticated password crack-

ing attacks need to be employed. The proposal that this thesis puts forward looks at

ways to leverage contextual information about the target(s) to enhance the password

cracking process and aid Law Enforcement in their fight against digital crime.

1.1.1 Why Are We Still Using Passwords?

With all the known weaknesses of password-based authentication systems, one

might wonder: why are we still using them? One explanation might be the pub-

lic acceptance of this mechanism. Everybody has already used password-based

authentication. In fact, it is estimated that, on average, a human has between 70

and 150 online password-protected accounts even though often the users them-

selves fail at evaluating their own digital environment/footprint. The only certainty

is that this number is growing over time as the world is experiencing its ongoing

digital transformation. This societal phenomenon is mostly technologically driven

and is safe to assume will continue into the future with autonomous driving, remote

surgery, smart homes, etc.

But with that being said, what are the alternatives to a password? Single-Sign-

On (SSO) strategies, active-directory, and password managers offer substitutes or

enhancements over simple password authentication. Each of these solutions in-

crease account security as they often require additional elements for a malicious

actor to access a given system, e.g., having access to the key wallet protected by

the password manager. Nevertheless, they still rely on a password at one stage or

another and are unfortunately not yet widely adopted [14]. This is also largely true

with two-factor authentication, where one of the factors often remains “something

you know” – namely a password.

Lastly, some people might argue that they are no longer using passwords to

unlock their phone, make payments, etc., but instead use their fingerprint or facial

scan for identification. However, any service relying on a fingerprint reader or facial

scanner on their phone can be bypassed by knowing the master code of the phone
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– this allows anyone to define a new fingerprint and bypass this security feature.

Therefore, passwords are not dead and will most likely continue to be used in one

way or another for the foreseeable future. It is of utmost importance to strengthen

password-based authentication systems. Of course, this includes safe storage of

the password on the server/device side. Furthermore, passwords selected by users

should be strong in the very first place to ensure the best level of security.

1.1.2 Law Enforcement Investigation

The other side of the coin is that security reinforcements and the ready availability of

strong encryption tools can also benefit criminal enterprise and hamper lawful inves-

tigation [15]. As much as a password is the barrier for attackers to breach a critical

system, it is equally a hindrance for law enforcement conducting their investigations.

In the context of a digital forensic investigation, the use of password-protected ac-

counts and devices can present a hurdle for their lawful analysis under warrant [16].

The prevalence of password protected encrypted storage coupled with increas-

ingly stringent password policies can result in cases being significantly held up in

the best case or hitting a dead end in the worst case. Law Enforcement Agencies

(LEAs) throughout the world are struggling to keep up with the demand for digital

forensic investigation – with multi-year, case hindering backlogs becoming common-

place [17]. When time is of the essence both from a time-sensitive case (e.g. child

abuse investigation, human trafficking, etc.) and investigative efficacy perspective,

the decisions made on what resources to allocate to each digital investigation can

be crucial.

Law enforcement agencies are nowadays encountering digital evidence in al-

most all investigations. An outstanding proportion of offenders, like any other mem-

ber of society, they have at least a mobile phone and a personal computer. These

devices follow the security trends of the manufacturers and the content is most likely

protected with a basic standard of protection at a minimum. Nowadays, mainstream

desktop computers and mobile operating systems offer built-in password protected

encryption of their storage volumes [18]. This feature is usually enabled by default

in many cases without user configuration [13].

Offenders often take additional security precautions if they are aware of the risks
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of investigation – as highlighted in the latest Internet Organised Crime Threat As-

sessment (IOCTA) report from Europol [19]. For example, they might employ ad-

ditional levels of encryption over what might be enabled by default, such as full

disk encryption or encrypted communication – again often protected by a password.

Attempting to brute force a password for each account, encrypted file or storage

volume can use a large amount of resources with no guarantee of success in any

reasonable time frame [13].

1.1.3 The Role of the Password in Digital Investigation

In the case of a law enforcement digital forensic investigation, the investigator could

be faced with the encrypted system of a perpetrator, which can pose a significant

hindrance to the investigation, or bring it to a halt entirely [13]. Suspects are not

always inclined to share their passwords, especially if there is incriminating informa-

tion in them. In many jurisdictions, law enforcement cannot compel that information

from them [20]. Furthermore, in a triage situation, where the discovery and pro-

cessing of evidence in a timely manner is crucial to the outcome of the investigation,

it becomes paramount to access suspect devices as quickly as possible. There-

fore, generic approaches like a brute force attack, or an extensive dictionary search

would not be suitable because of time constraints and other methods should be

considered.

Research shows that the distribution of passwords of users is not uniform [21]

and users tend to gravitate towards passwords that contain information that is per-

sonally connected to them [22]. Therefore, it stands to reason that the cracking

process can benefit from a tailored approach using the available contextual infor-

mation of the suspect. A user-centric approach could leverage this knowledge by

focusing on the individual whose password needs to be cracked, and more specifi-

cally, the information available about them through open source intelligence or other

investigative means. This will result in an attack that is tailored to the individual

target, which could return results when traditional methods fail.

In the case where a single password is considered, if the investigator is aware of

information regarding the target, that information can be leveraged aiming at crack-

ing the password in fewer attempts. An example of this type of situation would be a
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Law Enforcement Officer wanting to access a password protected digital device of a

suspect during the course of an investigation. In this case, time is of the essence in

order to swiftly resolve the investigation or prevent further criminal acts.

Another particular case is when the targeted dataset can be associated with a

particular context. An example would be a penetration testing campaign evaluating

the strength of the passwords used by the user of a system. If such a system is

linked to a particular community, e.g., users of a video game service, the operator

can use contextual information such as typical language used in this community,

references from the topic, or any other type of contextual information to refine the

password cracking process.

All the above information can be useful, to try to make more educated guesses

about the password of a target or a community. The ultimate goal is to recover the

password faster than current state-of-the-art approaches would, by giving the inves-

tigator a head start regarding the wordlist they use during the password cracking

process. By creating a custom wordlist, that is tailored to the target and by checking

first password candidates that are more likely to be chosen as the password by the

target, a more efficient password recovery process could be achieved.

In this case, it is essential for the investigator to have at their disposal the nec-

essary bespoke dictionary lists, those that focus and contain password candidates

that closely align with the suspect’s interests and hobbies. To assemble such lists,

natural language processing can be used, to create a concentrated body of words

that align thematically with a starting seed word.

1.2 Research Problem

The research presented in this thesis seeks to leverage contextual information for

the purpose of password cracking. Towards addressing this problem, the following

three questions were defined and pursued in this thesis.

RQ1: What impact does a context-based password cracking approach have on the

likelihood of success during a digital investigation?

Password cracking techniques that make use of dictionaries, whether this is for
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directly using the dictionary with a password cracking tool or by using the dictio-

nary as training input, have been mostly utilising data coming from real-world data

leaks. These dictionaries, since they contain real human-chosen passwords, rep-

resent well what human passwords look like. This makes the dictionary attack one

of the most successful password cracking techniques available. However, this tech-

nique does not take into account the semantic information within the password. As

the related work that is discussed in Chapter 3 will show, it is important to look at the

context found within the password and harvest it for the purposes of more informed

password cracking.

In order to enable digital investigators to make informed decisions on the like-

lihood of success for this approach, actionable statistics are needed, based on a

significantly large dataset of real-world passwords. As part of this thesis, a list of

555,278,657 unique passwords correlating to 3,951,907,330 real-world accounts

will be assessed. Password reuse accounts for the disparity in these numbers, i.e.,

repeatedly used passwords between both different accounts and different users.

Furthermore, smaller datasets that are centred around niche topics will also be eval-

uated with dictionary leaks stemming from similar topics.

RQ2: How can a context-based password cracking dictionary be generated, be-

spoke to the interests of an individual suspect or a group of suspects?

The approach followed by digital investigators is different from those of malicious

password crackers. The latter is predominantly interested in getting one hit to enter

into a system under any user’s account, or to gain access to the maximum of entries

in a given dataset. The former are more interested in one specific user’s account –

the one of the targeted suspect.

To answer this research question, a modular framework to assess the quality of

a wordlist is designed to be used in password cracking processes. Several criteria

have been proposed that can be considered for the evaluation of dictionary lists,

and it will be explained why there cannot be a single and totally ordered metric to

evaluate the wordlist.

Furthermore, a methodology for creating bespoke and topic-specific dictionary

lists will be introduced, starting with a single contextual seed word centring around
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one topic of interest. The dictionary lists will be fully customisable; the length of

the list and the contextual broadness of the generated password candidates will be

selected by the creator of the list. Merging lists from multiple seed words will also

be an option. Furthermore, extensive evaluation of the proposed methodology will

be presented to demonstrate the viability and impact of context-based password

cracking.

RQ3: How can password candidates be contextually prioritised in a dictionary, and

what impact does this prioritisation have?

One of the purposes of this work is to aid law enforcement investigators during

criminal investigations by providing dictionary lists for password cracking that are

tailored to the suspect. Frequently, ensuring swift access to password-protected

systems and devices can be the one detail that will make or break an investiga-

tion. Therefore, trying to optimise the password cracking process with regard to its

success rate but also the fastness with which these results are produced is funda-

mental. The methodology described in the answer to the previous research question

can become an important tool in an investigator’s toolkit, by providing readily avail-

able, highly-customised contextual dictionaries on any topic – however niche. As

part of this thesis, a process for optimising and ranking the candidates of a custom-

made dictionary list is also presented. The password candidates are ranked so that

more suitable password candidates are checked first, in a bid to save time during an

investigation. This approach is also evaluated with data leaks stemming from com-

promised online communities focused on specific topics, as accessing a sufficient

number of individual user’s information is not possible. Nonetheless, the contextual

approach proves itself valuable in finding many passwords that were not recovered

with generic techniques. The optimised, ranked dictionary lists as presented in this

thesis offer a significant increase compared to popular, widely used dictionaries.

1.3 Contribution of this Work

The work outlined as part of this thesis proves that context plays a role during users’

generation of passwords and can therefore be exploited by LEAs during their lawful
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criminal investigation. There is no dataset available focusing on a single user, and

ethical reasons prevent us from testing this approach on a single individual. As a

result, the analysis outlined below is focused on a community level in order to extrap-

olate how likely a contextual approach is to succeed. Nevertheless, the bespoke,

context-based approach outlined as part of this work is proven to find passwords

exclusively recoverable using this technique, i.e., those that were not found by cur-

rently used, generic approaches. The contribution of this work includes:

• The largest and most comprehensive analysis of real-world passwords con-

ducted to date. This work looks at the underlying statistics of the constituent

passwords and their component fragments, showcasing password creation

tendencies of real users. Furthermore, the most common semantic classes

are identified, underlining the importance of context/interest when users se-

lect their passwords.

• A framework for the standardised evaluation of password cracking dictionary

lists.

• The design of a novel methodology for creating bespoke dictionary lists based

off a user’s interests or specific topics. Furthermore, this methodology facili-

tates customisation from the dictionary creation parameters definition to pass-

word cracking tools selected.

• An evaluation of the above methodology based on a number of realistic sce-

narios for which the contextual approach will be a beneficial tool for an inves-

tigator.

• The execution of an extensive experimentation and evaluation of the method-

ology across a number of targeted datasets of varying topics.

• A technique for optimising and ranking contextual dictionaries based on their

relevancy to a specific topic.

• A detailed discussion highlighting the uses, benefits and limitations of lever-

aging context in password cracking.
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• Identifying several different avenues for the application of this work outside the

Law Enforcement context.

1.4 Thesis Organisation

The rest of this thesis is organised as follows. In Chapter 2, the technical back-

ground of concepts required to follow this thesis are presented in detail. A com-

prehensive literature survey on the topic is presented in Chapter 3, which covers

a broad range of related work in the field of password cracking. Chapter 4 illus-

trates the approach taken for to assess the impact of context in password cracking,

as well as the methodology to leverage that information. The tools and methods

that have been used throughout this thesis to implement the framework and pro-

cessing needed for the creation of the bespoke contextual dictionaries are explored

in 5. Chapter 6 is dedicated to the presentation of the results of the experiments and

Chapter 7 to a thorough discussion of them, including the position this approach can

occupy in the grand landscape of password cracking. Finally, Chapter 8 concludes

the thesis by looking at the implications of this work in related fields and outlines

several avenues for future work.
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Chapter 2

Technical Background

2.1 Introduction

Society is in constant evolution. The advent of the internet is often considered as a

key turn of civilisation same as controlling fire. While this is open to debate, what is

not is that such technological advance opens the door to major changes across the

digital world, leading to both great opportunities and new challenges. This evolution

is often referred to as the digital transformation of modern society. There are barely

any dimensions of people’s lives that are not affected by this change.

Law Enforcement Agencies (LEAs) are thereby impacted by the rise of a modern

digital world. Their community is already benefiting from the development of new

solutions to store, exchange and ease the access to information and tools. These

new solutions can act as facilitators and enablers, transforming the more traditional

procedures they apply when conducting an investigation to prevent or react after a

crime.

In parallel to those new opportunities, this digital transformation also creates

new challenges for law enforcement by providing new opportunities and means to

criminals. Crimes are now sometimes committed fully online, e.g., botnet exploita-

tion and ransomware. The digital world can be the channel to sell and exchange

illegal material, e.g., trading platform for drugs and weapons, or exchange of child

sexual abuse materials. Whatever the crime, the common challenge for law enforce-

ment is that data at rest or in transit is almost systematically protected by encryption
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means. Recovering the data in clear is often the key to properly pursue an ongoing

investigation or prosecute the criminals.

How do we deal with encryption? Direct attacks aimed at breaking the encryption

method itself are generally not possible, as robust and standard methods are nowa-

days available to everyone. Nevertheless, existing solutions are often password-

based, especially in the data at rest scenarios (the encryption method used in data

in transit can be totally transparent to the user). Passwords are the weakest point of

the whole security chain, as human-chosen password are known to be somewhat

weak in average [23]. Password cracking techniques are traditionally designed to

produce generic candidates, mimicking the most common passwords or patterns.

This approach is typically sufficient to assess the average level of security of a sys-

tem during penetration testing. A single hit, meaning the password of any user,

might be sufficient to harm a system in such scenario.

Law enforcement are in a different scenario as they focus on a single user or

groups of users. While generic password cracking techniques can remain success-

ful, they can benefit from a more targeted approach when dealing with encrypted

material. Humans have the tendency to generate easy to remember passwords [24].

One common method involves using personal information in the password, such as

Jeremy Hammond, a wanted hacker, who used the name of his cat in his pass-

word [25]. There however stand two challenges that are unsolved:

• How can state-of-the-art password cracking tools benefit from a targeted ap-

proach?

• How can the targeted approach aid Law Enforcement in their fight against

digital crime?

There are a number of survey papers on the topic of password cracking, with

analysis on password cracking methods and evaluation of strength estimators [26]

and suggestions on countermeasures [27]. Where this literature review innovates, is

on the incorporation of password tendencies of users and the inclusion of the Open

Source Intelligence (OSINT) element, where its use by LEAs is presented as well as

its potential usefulness as an additional element in a contextualisation attempt on

password cracking. To this end, a number of further research directions have been

identified on how to leverage freely available information for a targeted approach.
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Figure 2.1: Traditional digital forensics process model [8]

2.2 Digital Forensic Process

Since the dawn of the digital era, physical evidence collected on a crime scene are

not the only tools at the disposal of a law enforcement investigator. A variety of digital

evidence such as those collected on the physical scene: hard drives, computers,
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smart devices provide information such as the location off of GPS and tower cell

data, interests and hobbies of a suspect, information on close contacts, etc and

can give the investigator useful assistance. Nowadays, crimes, such as financial

scams, human trafficking and child pornography distribution can be organised and

perpetrated exclusively online. For this reason, many protocols and procedures on

how to deal with digital evidence have been proposed by researchers, that cover

all steps of the investigative process in both cyber and traditional investigations. A

general process model can be seen in Figure 2.1. According to Du et al. [28], the

typical stages of a digital investigation are:

1. Identification - The first stage is about identifying the details of an incident or

crime and the relevant evidence that might need to be examined. For example,

in a house search, all digital devices that belong to the suspect have to be

identified for collection in the next steps.

2. Preservation - This stage is about preserving the crime scene and the evi-

dence by taking photos, keeping a chain of custody on the evidence, etc. This

is an important step in the investigation from the beginning to the end when/if

the evidence must be presented in a court of law.

3. Collection - In this stage of the investigation, the digital evidence that is

deemed relevant is collected from the crime scene. This is usually done by

imaging the electronic devices by using special forensic equipment and soft-

ware in order to not alter their content in any way.

4. Analysis - This is the stage where the investigator has to interpret, analyse

and organise the evidence they have acquired and “build their case”.

5. Reporting/Presentation - The last stage refers to the presentation of the find-

ings of an investigation to a court of law or other authority. An important detail

to be taken into account is that the results presented at this stage would have

to be reproducible by other investigators in order to be accepted.

In addition to the typical stages of a digital investigation mentioned above, the As-

sociation of Chief Police Officers (ACPO) has provided a Good Practice Guides for

Digital Evidence which includes the known widely ACPO Principles that every prac-

titioner must follow when handling digital evidence [29]. The last update to this guide

is from 2012.

In situations where time is of the essence, some deviations from the traditional
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digital investigation models are needed. This means deviating from an in-depth

analysis of digital evidence at the lab in favour of extracting quick information that

will aid in a time critical investigation such as an abduction or a kidnapping [8]. In

this case, some adjustments need to be made to the traditional model for triage.

The Computer Forensics Field Triage Process Model (CFFTPM) incorporates these

changes as seen in Figure 2.2.

2.2.1 Digital Forensic Challenges

Despite the many established processes and procedures on dealing with digital ev-

idence and performing digital forensics, there are many challenges in the field that

hinder the effort of digital forensics specialists to acquire and process digital evi-

dence in a timely manner. There are quite a few efforts over the years to identify,

categorise and analyse the current challenges facing the digital forensics commu-

nity, as well as look at the trends for the future.

Al Fahdi et al. [30] conducted a survey of digital forensic practitioners, who

overwhelmingly predicted an increase in complexity for investigations in the future.

Another survey of practitioners, showcased that the challenges spread across the

spectrum; from technical (higher support for cloud forensics) to legal (privacy laws)

and educational challenges [31].

A taxonomy of current challenges in the field is presented by Karie and Ven-

ter [32], while Lillis et al. [17] aim to define the future areas of research in digital

forensics. In general, the different categories of challenges are split into three main

categories, technical challenges, challenges regarding the law and challenges re-

garding resources.

2.2.2 Digital Forensic Backlog

Due to the rapid growth of digital crimes in conjunction with the number of seized

devices in these crimes and ever-increasing data storage of these devices, each

investigation might acquire a significant number of devices and data that need to be

analysed [33], with additional complexity due to device encryption. In fact, according

to Safaei et al. [34], each person will use more than 9 devices in their day-to-day lives
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Figure 2.2: CFFTPM digital forensics process model [8]

by 2025. This creates a backlog of cases up to four years that leads to LEAs not

being able to process the evidence in a timely manner and might even lead to cases

being dropped [35]. One more reason that adds to the backlog is the increase of IoT

devices that are used in everyday lives as well as the ever-increasing use of cloud
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services [17] as detailed below.

Technical challenges

IoT Forensics A consequence of the digitisation of society is the ever-growing

constellation of IoT and smart devices surrounding each individual. Such growth

raises privacy and security issues as threats and vulnerabilities, e.g., Denial of Ser-

vice (DoS) attacks, spoofing, eavesdropping, etc., have already been identified in

those devices [36]. From another point of view, those devices and the data they col-

lect and process constitute a gold mine of information for law enforcement. In a 2019

survey with digital forensics practitioners, it was found that many of them already en-

counter IoT devices in their work but feel under-trained to examine them [37]. To this

end, specific procedures for forensic investigations on IoT devices must be defined

to take advantage of such data without contributing negatively to the already existing

backlog.

Cloud Forensics As more and more companies move to the cloud, due to its

lower cost and ease of troubleshooting, the advantages of performing digital foren-

sics on the cloud are also more apparent. Cloud forensics is defined by Ruan et al.

[38] as “the application of digital forensics in cloud computing as a subset of net-

work forensics”. Therefore, it is important for digital forensic investigators to be able

to apply the same techniques and procedures they use in digital devices to their

cloud counterparts. To this end, Ruan et al. [39] have conducted a survey with

digital forensics expert participants in order to analyse the current issues and chal-

lenges faced by this industry when it comes to cloud forensics procedures, tools

and investigations as well as to identify future opportunities for research and de-

velopment. Some of the challenges the participants claimed posed a hindrance to

the investigation include evidence segregation and lack of access to physical data.

Furthermore, Manral et al. [40] have summarised and grouped the digital forensic

challenges in the cloud according to the step of the investigation process the inves-

tigators encounter them on. Some of these challenges that are specific to cloud

forensics include dealing with jurisdiction issues and being familiar with different

cloud architectures.
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Legal Challenges

When it comes to a digital investigation, a challenge for law enforcement is making

sure they can guarantee the admissibility of digital evidence into a court of law.

This means that the proper procedures of the digital investigation process must be

carried out successfully in every step of the investigation, such as ensuring the

proper collection of evidence and keeping the chain of custody. It is a challenge

for law enforcement to properly evaluate and report on digital evidence in a way

that establishes their validity and admissibility. This challenge is directly tied to the

correct following of the digital investigation process as described in Section 2.2.

Anti-forensics, is another hindrance to properly evaluating and reporting on digital

evidence. Anti-forensics is defined by Liu and Brown [41] as the “application of the

scientific method to digital media in order to invalidate factual information for judicial

review” and has the goal of making the collection of digital evidence by investigators

more complex and/or invalidating their findings. It is employed by criminals as a way

to mitigate the results of LEA finding evidence that can incriminate them.

Resource Challenges

When it comes to personnel challenges, police officers that have to perform digital

forensics are most of the time not adequately trained on how to use the forensics

analysis equipment and handle the evidence according to the established proce-

dures [42]. According to the United Kingdom’s (UK’s) House of Commons Justice

Committee [43], the reason for this is the unavailability of funding. In addition to this,

in many cases, there is not enough available personnel to actually work on forensics

analysis cases.

2.2.3 Prevalence of Passwords is Hindering Investigation

Ever since the emergence of the World Wide Web (WWW), criminal activities are

being conducted more and more on the internet, with digital devices being the fa-

cilitator or the place where information pertaining to these crimes is being stored.

Nowadays, most popular Operating Systems (OSs) of electronic devices make sure

to encrypt the internal storage of the device in order to ensure the safety of the data
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on the device [18].

Indeed, in many cases encrypted devices hold sensitive information that can

make or break an investigation, some of which might be time critical, e.g., a kidnap-

ping or a terrorist attack. There are of course tools in an investigator’s arsenal for

dealing with encrypted devices, but more often than not, these tools and processes

can be time-consuming and a successful result is not guaranteed.

As stated by Plunkett et al. [44], “the lack of passwords, particularly during the

execution of search warrants, has hindered investigations”. It can be crucial to get

access to such content during an investigation – necessitating the retrieval of the

suspect’s password(s). Of course, criminals are not always inclined to share their

passwords with the investigators.

There have already been cases of LEA reporting hindering of investigations

where suspects have not provided the password to access an encrypted device [45]

or suspects being sentences to prison for not revealing a password that pertained to

terrorist activities [46]. One of the most polarising cases of 2016 was the case of the

San Bernandino terrorist attacker, where the American government requested Ap-

ple’s help to unlock an iPhone belonging to the shooter suspect. The case drew un-

precedented attention, and various debates arose about whether Apple (and other

companies) should comply with requests like this [47]. In the eyes of the Federal

Bureau of Investigation (FBI), Apple’s refusal to comply with this request constituted

as obstruction of justice [48].

It is not always possible to compel the suspect to divulge his/her passwords

through a court order. For example, compelling password surrender could be con-

sidered as against the Fifth Amendment in the USA protecting suspects from self-

incrimination [49]. In some other countries, it is considered a crime to not reveal a

password under court order, e.g., in the United Kingdom within the Section 49 of

the Regulation of Investigatory Powers Act 2000. Nevertheless, the suspect may

well decide to not reveal the password if the sentence incurred is lower than what

might be expected should police gain access to the device(s). In each of these

cases, LEAs have no other choice than conducting password cracking processes to

recover the suspect password and examine the targeted content.
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2.3 Open Source Intelligence

The work that has been done into looking at password habits of users has shown

that personal information such as interests and personal details are often included

in passwords. When looking to access a specific suspect’s device, law enforcement

might have better results when taking a more targeted password cracking approach.

To this end, OSINT could be a good source of information.

The US Intelligence Community Directive 301 [50] defines Open Source Infor-

mation as “publicly available information that anyone can lawfully obtain by request,

purchase, or observation,” and Open Source Intelligence as “produced from publicly

available information that is collected, exploited, and disseminated in a timely man-

ner to an appropriate audience for the purpose of addressing a specific intelligence

requirement”.

OSINT techniques appeared before World War II [51, 52, 53] and were at the

time known as overt intelligence. The main source was enemy press as well as

press in countries that remained neutral [51]. While it can be argued that this sort of

information gathering rarely yielded great revelations, it provided a coherent image

of the public opinion as well as the living conditions [51].

Nowadays, OSINT has evolved remarkably to include a plethora of online

sources available to anyone such as the Internet (social networks, online ency-

clopedia, whois domain records, etc.), traditional media (newspapers, television,

radio), academic publications (journals and conference proceedings), grey literature

(technical reports, diplomatic message), geospatial information (Google Maps and

Streetview), publicly available data (government reports, budgets), etc. [54, 55].

One of the most useful traits of OSINT is the volume and the availability of infor-

mation [56]. According to Roser et al. [57], the number of internet users increased

from 413 million in 2000 to more than 3.4 billion in 2016. As a consequence, millions

of data are produced every second and the Internet is more than doubling its size

in amount of data every two years [58]. This is an information gold mine, but it is

also a tremendous task to sort through such a volume of data and transform the

collected pieces into something valuable. According to Burke [59], intelligence can

be viewed as the end product that stems from the analysis and filtering of data to

generate something of value for a specific purpose.
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Furthermore, a downside of its availability is that it is not easy to evaluate the

quality of the information, especially when it stems from the internet [60]. This issue

is not something new, or in fact singular to OSINT, as intelligence agencies have

long resorted to keyword sampling and other filtering techniques to sort through

exorbitant amounts of information [61].

On the other hand, Miller [62] poses the question whether or not information that

is readily available on the internet can be called intelligence. The argument against

classifying as intelligence is that it is not acquired by clandestine means, nor does it

need special handling like covertly acquired information.

2.3.1 Types/Classifications of Open Source Intelligence

OSINT is a broad term and under each umbrella falls information that is easily and

readily available to everyone. But there are different types of OSINT and this classi-

fication is presented below.

Human intelligence (HUMINT) + Social Engineering

The North Atlantic Treaty Organization (NATO) Glossary of Terms and Definitions

defines HUMINT as “Intelligence derived from information collected by human oper-

ators and primarily provided by human sources” [63]. HUMINT, in the literature, is

usually encountered in cases of an individual conducting espionage, but can also be

information that is acquired through diplomatic dialogue or liaison exploitation [64].

Social Engineering is similar to HUMINT, but is focused on social interactions.

In Mouton et al. [65], the authors gather existing definitions of social engineering

and propose a more structured definition as: “the science of using social interaction

as a means to persuade an individual or an organisation to comply with a specific

request from an attacker where either the social interaction, the persuasion or the

request involves a computer-related entity”. Hatfield [66] provides an evolution of

this concept starting from its first appearance in a political context in the 19th cen-

tury to its eventual migration to the field of cybersecurity. According to Krombholz

et al. [67], social engineering can include physical attacks (dumpster diving), social

attacks (baiting, use of alleged authority), reverse social engineering (where the at-
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tacker tricks the victim into contacting them), technical attacks (usually carried out

over the internet), or a combination thereof. Of course, due to the increasing use

of social media, it is natural that social engineering attacks increasingly focus on

targeting users on social media.

Social Media Intelligence (SOCMINT)

SOCMINT is one of the newest members of the intelligence family, made necessary

by the rapid development and increasing usage of social media since the beginning

of the 21st century. SOCMINT differs from other traditional forms of intelligence

because it can be viewed as a starting point for political, economical and social

knowledge production [68]. Due to the ever-evolving nature of crime, it renders

older models of intelligence less robust in this new digital era. It is up to police

agencies to keep up with the times and be proactive in their fight against crime.

SOCMINT becomes more useful when it is applied to groups or individuals for

establishing behavioural patterns [69]. Social media nowadays is used not only for

communicating with people, but from things like organising social protests [70] to

spreading extremist propaganda [71]. For this reason, SOCMINT can be utilised to

predict and identify online threats [72, 71], as well as for gaining insight into group

relations and online interactions [73].

Crowdsourcing

The term crowdsourcing was coined in 2006 by Jeff Howe [74]. Crowdsourcing is

different to outsourcing because it is using the efforts of a virtual crowd to perform

specific tasks [75]. When it comes to criminal investigations, crowdsourcing can be

described not as harnessing crowd resources, but as collecting investigative leads

by the public to aid an investigation. There are plenty of advantages to crowdsourc-

ing, e.g., the lower cost and the speed, because the network of people involved in

the investigation is larger and varied (amateurs and professionals). Furthermore,

crowdsourcing is flexible, as it is not hindered by time zones, public holidays, bu-

reaucracy, and can be scaled easily from a local to a global scale [76]. Users from

all over the world can participate in crowdsourcing activities, such as Close-Circuit
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Television (CCTV) monitoring or footage analysis, from their computers from their

home or office. A study of four such cases from the UK is presented by Trottier [77].

2.3.2 Open Source Intelligence in a Law Enforcement Context

Collecting available information and leverage it to generate useful leads was per-

formed by law enforcement already before the digital era. During a typical crime in-

vestigation, they use and act on knowledge they acquire though traditional sources,

such as victim and witnesses accounts and physical evidence, in order to solve the

crime. Such collection of evidences can nowadays be enriched by online sources

thanks to existing OSINT techniques. Furthermore, the monetary and manpower

costs of those tools during an investigation are both minimal.

Social and Media Monitoring

Social Network Analysis (SNA) is used by LEAs to identify the relations between

different entities of a criminal network [78]. SNA is effective for collecting evidence,

analysing interactions and online activities, deriving information about criminal ac-

tivity as well as the patterns and ties of the involved actors. Van der Hulst [79] gives

an analysis of SNA as an investigation and intelligence tool and a protocol draft for

handling network data.

This typical procedure may sometimes miss crucial evidence that are solely lo-

cated online, justifying why such analysis is nowadays considering online sources

and more specifically social networks. Integrating social media sources into the

investigation can help police officers make more educated decisions. These

sources also complement the evidence they have already acquired through tradi-

tional means. Social media can be a point of convergence for data and information,

and this is also precisely what makes them useful in an OSINT investigation [80].

The integration of social media to a law enforcer’s toolkit is usually done as part of

an ongoing investigation or as a preventative measure, to be obtained through con-

tinuous monitoring and data mining of known malicious online domains. Of course,

social media monitoring has to be performed alongside OSINT investigation in order

to enrich the level of understanding of a particular target as well as to help verify the
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validity of information [81].

SOCMINT can be performed in real-time to monitor and intervene in a situa-

tion [69]. Social media with location tagging features such as Snapchat and Insta-

gram, and most notably Twitter with its hashtag function, can provide a valid image of

the real time developments on a certain topic or the current situation in a specific lo-

cation. A similar approach is the processing of CCTV footage, either during criminal

investigation or for monitoring purposes [82]. According to Trottier [83], the moni-

toring of public or semi-public spaces through private or public means enables LEA

to take hold of information that would otherwise be considered fleeting and morph it

into intelligence. The same can be said for online monitoring of open sources and

social media accounts where users interact the same way they would do face to

face, with the difference that the information that is exchanged is not ephemeral as

speech but forever stored on the internet.

Those capabilities provide almost real-time information that can be determinant

during an investigation, allowing sometimes an instant reaction [84]. Digital traces

left online by criminals can lead to location information or evidences about criminal

activities [85].

Crowdsourcing Contributions

Aside from obtaining publicly available information, law enforcement have also iden-

tified the advantage of leveraging the collective knowledge of the public in a crime

investigation. A good example of the effect of crowdsourcing in a criminal investiga-

tion is in the case of the Boston Marathon bombing in April 2013. Citizens engaged

in their own investigation of the case in real time, on Twitter and online forums like

Reddit [86]. Often, the news of a breakthrough would reach Twitter before news

agencies reported it. Citizens, amateurs and professionals pooled their resources,

studied photos and videos from the scene of the bombing and performed forensic

analysis on the evidence they collected [87]. While their endeavour did not cor-

rectly pinpoint the culprits, it was a useful assistance to law enforcement personnel

who used the leads and efforts of the public to successfully identify and catch the

perpetrators [88].

There are initiatives targeting the power of crowdsourcing for aiding in an inves-
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tigation. Most notably, Europol’s “Trace an Object” [89] initiative to help combat child

abuse, asks individuals to examine objects in the background of images with sex-

ually explicit material involving minors, with the aim of identifying the origin of the

object. Another such initiative is TraffickCam [90], which asks users to upload im-

ages of hotels they have stayed at in order to create a database of hotel rooms. This

database can then be used by an investigator, who can compare images recovered

through an investigation to those in the database with the aim of finding the location

of the crime.

Of course, turning to the public for leads in a crime investigation means that a

huge number of responses can be expected. For the first year of the Trace an Object

initiative, Europol reported 21,000 leads sent by citizens for 119 objects, resulting

in the identification of 79 objects in total and in 32 cases, in the identification of

the country of production [91]. This overwhelming amount of leads though means

that LEA need to implement procedures for handling, filtering and evaluating this

information. One such case is of the Netherlands National Police and their use of

an Artificial Intelligence (AI) agent messaging processing tool about the messages

they receive through the Interpol Channel [92].

Digital Forensic Intelligence (DFINT)

The application of knowledge gathered from OSINT can be incorporated with the

information already gathered in a traditional investigation, where one source aids

the other. Quick and Choo [93] proposed a framework called DFINT + OSINT, which

aims to use OSINT in conjunction with previously used digital forensic intelligence

with the aim of finding even more useful information about crimes based on already

collected data. The authors developed a tool called DRbSI (Data Reduction by

Selective Imaging), which reduces the amount of data that need to be looked at,

and an Entity extractor that processes data types found in the DRbSI subsets and

merges them into a single source.

OSINT tools: A non-exhaustive list

There are many tools in existence that digital investigators make use of to comple-

ment their investigations. In addition to paid tools, there is a variety of online OSINT
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tools that quickly gather and cluster information in ways that could be useful to an

investigation. There is a large number of tools available, many of which have dupli-

cated functionality. Two useful lists of tools are the Awesome OSINT List ’[94] and

the OSINT Framework [95]. These lists contain tools that can be useful in an inves-

tigation but also tools for marketing insights, etc. In Table 2.3.2, an indicative list of

tools that can be useful to an investigator when looking at the online presence of a

suspect is presented. As can be seen in this table, these tools can provide useful

insights for the online presence of a suspect, such as the users they most interact

with, the topics they most care about and even their sleeping patterns.
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Function Example Tools Notable Usage

Automation Suites

Maltego https://www.paterva.com/ Entity transformations

theHarvester https://github.com/laramies/theHarvester OSINT gathering from multiple sources

Spiderfoot spiderfoot.net Scanning and monitoring open data sources

Twitter

Twitter ID gettwitterid.com/, tweeterid.com/ Unique numerical identifier

GPS enabled tweets/geocoding geosocialfootprint.com/ Estimate of likely location based on social check-ins and geocoding

Sleeping Patterns sleepingtime.org/ Sleeping Patterns of specific user

Record of profile changes spoonbill.io/ Profile changes of specific users

Trending topics by location trendsmap.com/, tweetarchivist.com/ Tracking and analytics of users and topics

Sentiment analysis on hashtags socialbearing.com/ Analytics on twitter usage including sentiment analysis and hashtag use

Visualisation of a twitter community burrrd.com/ Insights including top connected users and top topics

Facebook

Find Facebook ID findmyfbid.in/, lookup-id.com/ Unique numerical identifier

Facebook Search facebook.com/help/821153694683665 Facebook’s inherent search tool

Who Posted What whopostedwhat.com/ Search by date, location or Facebook UID. Works on Instagram too

Email

Email Format email-format.com/ Find the email format of a company

Email Permutator metricsparrow.com/toolkit/email-permutator/ Permutations of possible email addresses

H8mail github.com/khast3x/h8mail Password hunting tool that matches email addresses to leaked passwords

Reverse Email Lookup thatsthem.com/reverse-email-lookup Returns useful information associated with an email address

We Leak Info weleakinfo.com/ Data breach search engine (search by email, username, password, hash, etc)

Table 2.1: A non-exhaustive list of OSINT Tools
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Legal and Ethical Considerations

However, the potential intrusive nature of OSINT, and more especially SOCMINT,

should not be ignored. Guidelines needs to be established on how law enforcement

officials can collect information with respect to the privacy and confidentiality of cit-

izens [69]. Frequently, the information a police officer might be looking for can be

found online, but behind a safety net of privacy settings. There are cases where this

digital limit has been circumvented through a friend of the potential suspect who had

access to this information and offered it to the police [96].

It is furthermore of the utmost importance that law enforcement check the valid-

ity of the information they have acquired, to ensure they are accurate before they

act on it [97]. For OSINT investigations, a methodology should be adopted, similarly

as for traditional and digital investigations, i.e., audit trail, chain of custody, etc. Ad-

ditionally, the processing and storage of personal data should be done with respect

to the laws of the country the investigation is conducted in.

2.4 Password Analysis

It has been more than 50 years since the concept of passwords was introduced

and adopted across society as a digital authentication method. Despite alternative

authentication methods being developed later, it is reasonable to assume that this

prevailing authentication method will not fall out of popularity anytime soon. The

average number of password-protected services and devices per user is a difficult

figure to estimate, and the user themselves frequently fail at estimating correctly.

Naturally, each password is closely connected to its creator, and the sheer number

of passwords a user might be asked to create and remember can result in unsafe

password management practices.
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2.4.1 Password Strength

Well aware of the weakness of human-chosen passwords, attackers aim at guess-

ing passwords to gain access to services or data [98]. One way to better protect a

service is to make sure that the password chosen by the user would resist the ef-

forts of a potential attacker. Password metrics are therefore needed in this context,

providing a measure of the strength of the password. Such a score can be the result

of the combination of length, complexity, and unpredictability of the used password

or trying to evaluate the number of guesses an attacker should perform before re-

trieving the password [99]. These metrics have a large variance, as it was shown

that checking the same password in different meters can give highly inconsistent

strength outcomes [98].

Many popular web services use password-strength meters to give feedback to

users while they create new passwords, which might affect user behaviour during

password creation. These password strength meters utilise password policies in

order to guide users and help them develop safer password creation habits. One

of the most well known password policies was introduced in 2013 by the National

Institute of Standards and Technology (NIST) [100] and it requires passwords to be

at least 8 character long, with uppercase, lowercase, digits and special characters

included [101].

But even when these policies are enforced, users still try to bypass them in favour

of memorability. For example, if a web service requires a password to be changed

every six months, users might keep the same password by adding/incrementing a

digit at the end. The password strength meters that are now in use have also evolved

to anticipate this behaviour by users and often detect and disallow passwords that

contain the same basic structure as previously used [102].

There are many password strength meters available, and many companies cre-

ate and use their own that are based on their company’s password policy. Therefore,
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Figure 2.3: Comparison of strength scores for various online services [9]
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an issue arises when different strength meters give different results in terms of how

secure a password is, which can be confusing for users. This is detailed by Car-

navalet and Mannan [98] in their article, and an online tool they have developed,

offering a comparison of strength meters from various services, showcases this dis-

crepancy [9]. Figure 2.3 shows the strength scores for some passwords across

various popular online services.

2.4.2 Hashing and Salting

One of the most common way passwords of users are obtained by attackers nowa-

days is directly from where they are stored in the database of the relevant sys-

tem/website. Until recently, many such credential collections (username and pass-

word) were even stored in plaintext (also known as cleartext), i.e., there was no

hashing involved, and the passwords appeared “in the clear”, or in readable form.

This means that if an attacker gained access to the files where this information was

stored, they would be able to access the account of every user in that file, some

of which could be accounts with extended privileges. This would represent a mas-

sive security breach which could seriously compromise confidential information or

disrupt services.

In order to ensure that sensitive information remains privileged, hashing has

been introduced. As stated by Leurent and Peyrin [103]: “a cryptographic hash

function H is a function that maps an arbitrarily long message M to a fixed-length

hash value of size n bits.” The message, is also known as input, and the fixed-length

output is known as the hash or message digest. As stated by OWASP’s (Open

Web Application Security Project) Guide to Cryptography [104], a hash function is

selected in such a way that it is easy to generate the hash of a message, but very

difficult to re-generate the message if only the hash is known. Another characteristic

of hash functions in cryptography is that it is difficult to select an initial message with

30



2.5. DATA BREACHES

the goal of it matching a specific hash.

There are many different hashing algorithms, some still in use and some that

have been rendered obsolete, either because of the rapid increase in computing

power available or because of security vulnerabilities. One of the most well-known

hashing algorithms that is still used to this day, even though it has been proven

to be no longer collision resistant, is the MD5 function, which was introduced by

Robert Rivest in 1992 [105]. Another family of hash functions are the Secure Hash

Algorithms (SHA), algorithms that were designed by the NIST, with SHA 256 being

one of the most used algorithms today [106].

One extra layer of security before hashing a message with a hash function is

to add an extra set of characters as padding, either at the beginning or the end of

the password. This will create an entirely new hash, making it difficult for attack-

ers to use pre-calculated tables of hashed passwords. This process is known as

salting [107]. An illustration of the hashing and salting processes can be found in

Figure 2.4.

2.5 Data Breaches

One of the most serious problems faced in the domain of password security are data

breaches, i.e., the breaching of sensitive information from where they are stored for

safekeeping. When a data breach happens, datasets of credentials (most often fea-

turing usernames and passwords but sometimes also including other sensitive infor-

mation such as bank details, social security numbers and addresses) are unlawfully

obtained by adversaries. These datasets are then publicly released or auctioned off

to the highest buyer. This information can be used for tailored phishing attacks or

- especially because of users’ password reuse across different services - to enter

other systems with critical information and cause damage.
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Figure 2.4: Hashing and salting a password

Figure 2.5 shows some of the biggest data breaches and hacks that have oc-

curred during the last decade. As it can be observed in the figure, data breaches

represent a serious issue for users’ and services’ online security. It is therefore pru-

dent for companies to exercise every measure of security at their disposal to hash

and safely store that information in their servers.

Data breaches can offer attackers a serious insight into the thought process

behind password creation. Lists of leaked passwords have been analysed for this

purpose, both by researchers and malicious actors. One of the most important ob-

servations is that in many cases, users tend to chose simpler, easier-to-remember

passwords. According to the password manager tool NordPass, the 20 most popu-

lar passwords of 2022 are shown in Table 2.2. It can be observed that the majority

of these passwords are simply number sequences of various length, but easily pre-
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Figure 2.5: World’s biggest data breaches & hacks
figure by [108]
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Table 2.2: Most popular passwords of 2022 [10]

1 password 11 1234567
2 123456 12 1234
3 123456789 13 1234567890
4 guest 14 000000
5 qwerty 15 555555
6 12345678 16 666666
7 111111 17 123321
8 12345 18 654321
9 col123456 19 7777777
10 123123 20 123

dictable. Only a few non-numerical passwords are found in the Top 20, but these

also relate to either sequences of keyboard characters (qwerty) or the password

selection process itself (password, guest). Interestingly, NordPass analysed a 3TB

database of passwords to assemble this list, and it also provides further breakdowns

by gender for more than 30 countries with some interesting words making up the Top

10 in different countries. For example, football teams featured a lot in the Top 10 of

Italy, Portugal and the UK and 9 out of 10 passwords from Israel were number pass-

words, with the 10th being alphanumerical.
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Chapter 3

Related Work

3.1 Introduction

As far as a digital investigation is concerned, more often than not, a law enforcement

officer will find themselves in a situation where gaining access to a digital device or

computer system will be of the utmost importance for the course of the investigation.

Password-based schemes typically protect access to those devices, as they remain

nowadays the most used authentication method and are unlikely to vanish in the

coming years [109].

Lots of effort is put in place to on one side strengthen those mechanisms and

enforce users in choosing safe passwords, and on the other side, improve the pass-

word cracking techniques to gain access, often illegally, to systems. There is a

common belief that hackers are always a step ahead of defenders and sometimes

defenders will suffer penalising [110]. Nevertheless, both approaches can be bene-

ficial to law enforcement and contribute to the success of an investigation.

Retrieving a password is not the only way to penetrate a system, as many other

threats can be exploited by an adversary [111]. However, taking into consideration

that the majority of users follow common patterns in password creation, the chances

to retrieve a password are high [112] making it one of the most targeted methods
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leveraged by adversaries.

If the purpose is to retrieve a single successful password out of a set of users

instead of a targeted one, the success ratio is even bigger, because password crack-

ing techniques can be used concurrently for all targeted accounts, and it is very pos-

sible at least one has a weak, easy to crack password, providing a point of entry to

a system. There is a vast array of password cracking techniques, that are used de-

pending on the situation, from the traditional ones, like an exhaustive search, to the

recently developed ones, like machine and deep learning-based techniques, such

as the ones based on Generative Adversarial Network (GANs) [113]. A wide range

of tools and methods are available to perform such password cracking processes,

which is useful not only in terms of a lawful investigation but also for penetration

testing and account recovery purposes. This section provides an overview of this

field of research.

The rest of the chapter is organised as follows: Sections 3.2 to 3.5 look at pass-

word cracking techniques, from the classics like brute force attacks, rainbow tables

and dictionary attacks to the more current techniques that leverage AI and ML. Sec-

tion 3.6 shows some of the current state-of-the-art password cracking tools, while

Section 3.7 examines the future impact of quantum computing in password cracking.

Section 3.8 describes the factors that play an important role in password creation,

specifically looking at password reuse, user’s preconceptions regarding the security

of their passwords as well as demographic factors that might influence the security

of the password. Section 3.9 looks at the estimation of password strength, com-

mercial strength meters, and the role of password policies, while also looking at the

latest advances in the field. Finally, Section 3.10 provides a conclusion to the chap-

ter, highlighting the important concepts and identifying the gap in the literature that

this thesis aims to address.
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3.2 Brute Force Attacks

The most well known and straightforward method to recover an encrypted pass-

word is to try all possible combinations, which is known as an exhaustive search

or a brute-force attack [114, 115]. In this instance, if for example it is known that

a password is 8 characters long, and it includes only lowercase letters of the En-

glish alphabet, that means that every combination of letters in every order must be

checked from “aaaaaaaa”to “zzzzzzzz”. This equals to 268 combinations.

This means two things. Firstly, a brute-force attack has a success rate of 100%

- if all possible passwords candidates are hashed and then checked against the

hashed password, the password will be found. Secondly, when considering a rich

search space, i.e., including lowercase, uppercase, symbols and numbers with a

password’s length higher than a certain threshold, it becomes quickly unpractical to

perform an exhaustive attack. This is because the number of possible combinations

increases exponentially as the length of the password does.

With password cracking being a highly parallelised process since it is ideal for

being split into subtasks, the time each password cracking attack will take is also

highly dependent on the hardware. Graphic Processing Units (GPUs), due to having

many thousands of cores, are ideal for parallelisation and are preferred to Central

Processing Units (CPUs) for password cracking. For example, on benchmarks that

were executed on the latest NVIDIA GPU that was released in October 2022, the

NVIDIA GeForce RTX 4090, it was shown in benchmark tests that the cracking

speed for MD5 hashes was 164.1 GH/s (Gigahashes per second) [116]. This makes

a brute force attack an extremely inefficient attack for anything other than short

passwords, hashed with fast hash functions.
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3.2.1 Personal Identification Number (PIN) Based Attacks

As mentioned above, brute force attacks are one of the most common types of

cyberattacks, and one of the reasons why is how easy they are to deploy. Frequently,

little knowledge about the underlying mechanisms is necessary, and an attacker can

easily exploit vulnerabilities in a poorly thought setup. In the case of PIN-based

attacks, there are two main approaches, either aiming to guess the PIN or trying to

reset the counter of how many unsuccessful tries are accepted. The downside to

the latter is a vulnerability against DoS attack [117].

One case where an inherent flaw design reduced significantly the amount of

possible guesses is that of the Wi-Fi Alliance in 2007. In this case, if the Wi-Fi

Protected Setup (WPS) authentication failed, the access point would send back a

message that allowed the attacker to pinpoint which part of the PIN was not en-

tered correctly [118]. This design flaw allowed a significant reduction in the amount

of guesses needed to recover the PIN with a brute force attack, thus making the

success of the attack much more likely.

Brute force attacks for PIN-based devices can also be used in conjunction with

other techniques. For example, in a case of sound delays in the acoustic feedback

when pressing buttons in Automated Teller Machine (ATM) PIN keypads, a Markov

Model was first employed to reduce the search space which made the subsequent

brute force attack more achievable [119]

3.2.2 Distributed Approaches

A brute force attack presents as an ideal method for distributed approach to pass-

word cracking. In fact, it was shown that the benefit of concurrently computing

hashes in a distributed system using Message Passing Interface (MPI) took the

time it would take to find a 5 character password from 83 seconds with the pass-
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word cracking tool Cain & Abel to just 8 seconds for the distributed approach [120].

The above result highlights even further the need for enforcing strict password

policies and secure encryption on the side of the server. In fact, this is a serious

threat for Secure Shell (SSH) servers on the internet, where attacks using a num-

ber of systems attempt multiple combinations of usernames and passwords in an

attempt to find one where a weak password has been selected [121]. The problem

of detecting these types of distributed attacks becomes even more difficult when at-

tackers try them at a low rate, it becomes difficult to distinguish them from real users

failing to input their password correctly [121].

The use of massive networks of bots complicates things even further, as it makes

it even harder to detect an attack when hundreds of different bots query the server,

as it becomes harder to distinguish between legitimate users and bots and block

their IPs [122]. An example of a botnet attack is illustrated in Figure 3.1. Of course,

this type of massive operation comes with a significant cost to the attacker too, and it

also presents the problem of communication and synchronization between all these

systems.

Figure 3.1: How a distributed botnet brute force attack works
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3.2.3 Benefits and Limitations of the Brute Force Attack

The largest drawback of this resource-intensive approach is that it quickly reaches its

limits when the password sought is long and/or using a rich alphabet, i.e., alphanu-

merical with special symbols [115]. If that is the case, the number of combinations

that need to be tried skyrockets, and it quickly becomes impossible to do so in an

acceptable time frame. This is also one of the best strategies for mitigation against

brute force attacks, the selection of passwords that are long and complex enough to

render this type of attack useless.

Other ways to mitigate against brute force attacks include the use of Two-Factor

Authentication (2FA) – where, even if the brute force attack has been successful, a

second means of authentication is required to gain access to an account. Further-

more, for online services, limiting the number of attempts one can make to enter

the password after they have been unsuccessful a few times or increasing the time

between subsequent attempts can also render a brute force attack inconvenient and

unsuccessful.

3.3 Rainbow Tables

Hellman tables [123], a time-memory trade-off allowing to retrieve efficiently the

input of a one-way function, can be used to retrieve the password in a very effi-

cient manner. Many improvements to Hellman tables have been proposed since

then [124, 125, 16, 126], in terms of shortening the time span, increasing searching

efficiency, success rate, space utilisation, etc.

A Time-Memory Trade-Off (TMTO) approach relying on the principle of the Hell-

man table is Rainbow Tables [127] which was put forth in 2003. This approach is

focused on mitigating the time required to explore a given space. Rainbow tables

are based on the idea of TMTO, which focuses on pre-computing an almost exhaus-
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tive predefined search space of passwords. The main advantage of this approach

is that these tables store a minimal amount of information, and thus, enable a fast

lookup of a password if it exists in the predefined search space. This approach

needs less computer processing time but more storage than an exhaustive search,

which calculates the hash on every attempt.

Therefore, for the price of some storage capacities and the pre-computation of

the space to be explored, a password belonging to this given predefined space can

be retrieved in a negligible time compared to the pre-computation step. This is

highly valuable if one knows that several passwords are meant to be encountered in

practice.

Many projects have worked collaboratively to generate such rainbow tables, e.g.,

the rainbowcrack project [128], for the functions MD5, NTLM and SHA1. While

efforts are still made to improve the performance for generating such rainbow tables,

it is rendered almost useless in the field of password cracking due to the popular

usage of a salt in the storage of passwords.

A salt is a random string concatenated to the password before using it as the in-

put to the hashing function. Theoretically, rainbow tables could still be built for salted

passwords, but the defined space to explore must incorporate this salt. In practice,

the pre-computed table cannot be adapted to such value except by integrating it

during its generation, making such a task impossible due to the number of potential

salts. There is no fixed length for a salt, but it is generally long enough, e.g., 32 bits

or more, to render rainbow tables no longer usable in practice.

Using salted passwords has the additional benefit that two identical passwords

should have two different salts (as they are randomly generated) and will therefore

have two different hashes in the database.

Rainbow tables are no longer widely used for password cracking, except in spe-

cific scenarios, not only because of the use of salts, but because it is nowadays
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computationally feasible to perform millions of guesses in a short amount of time,

depending of course on the hash function [129]. Only if the investigator knows be-

forehand that the length of the password in question is small, can a rainbow table be

considered a reasonable possibility. Many efforts have been made to improve this

procedure, like focusing on pre-computation using cryptanalytic TMTOs [130]. An

improved rainbow table attack that uses a dictionary generator for more complex and

longer passwords showed a success rate of 83% in a case where the composition of

the passwords was known and matched the ruleset applied to the dictionary [131].

One of the biggest advancements in password cracking methods lies in the ac-

celeration that can be achieved as hardware evolves and moves away from using

CPUs for computation. It was shown, that in the case of Rainbow Tables, the use of

FPGAs (Field Programmable Gate Array) provided a 1000x speed-up to the corre-

sponding software approach without compromising the probability of success [132].

Another similar experiment using FPGAs for creating Rainbow Tables for the A5/3

(Katsumi) block cipher showed that a 9x speed-up could be achieved for single en-

gines and a 550x for a parallelised architecture with 64 engines [133].

3.4 Dictionary Attacks

A dictionary or wordlist attack makes use of predetermined lists of words as possible

password candidates for password cracking. They are given their name by the fact

that these attacks used to find words from the dictionary to use as possible pass-

word candidates - lately these dictionary lists are more refined and tend to include

passwords found in previous data leaks.

Compared to a brute force attack, a dictionary attack has a much more limited

search space and aims to leverage the fact that users prefer dictionary words to

meaningless strings of characters, as they are much easier to recall. This means
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that it’s easier and faster to execute, and it is one of the most popular methods of

password cracking used nowadays.

Password cracking attacks, like dictionary and brute-force attacks, are consid-

ered as the most commonly used online and offline, while attacks carried out to

leaked password databases are offline attacks [134, 135]. When considering offline

attacks, dictionary attacks have the advantage of time over brute-force attacks, as

the number of guesses is always smaller than the latter, even though it can be fully

customised with the use of mangling rules.

A comparison of a brute force attack to a dictionary attack showed that while the

brute force attack was more effective for shortest passwords (6-7) characters, the

dictionary attack found more passwords above 8 characters [122]. A combination

approach in the same study presented more balanced results. In another pass-

word cracking study with brute force, dictionary and hybrid attacks on real-world

passwords provided by users in a Slovenian University, it was again shown that the

majority of passwords were cracked. The comparison between the cracked and

uncracked passwords showed length playing a contributing factor, with the authors

stipulating that the security of textual passwords would be further compromised with

the increase of computing power [136].

Dictionary attacks can be used in a variety of attack scenarios. A simulated dic-

tionary attack on WordPress on a fictitious person by [137] shows the requirements

and tools needed to execute such an attack, as well as countermeasures and proce-

dures for the forensic investigation of a dictionary attack. In a scenario of two-factor

authentication using smart cards, it was shown by Wang and Wang [138] that once

the smart card security parameters are compromised, the corresponding password

factor can be guessed via an offline dictionary attack. Work has focused on the dis-

covery and detection of online dictionary attacks, with [139] simulating SSH-based

break-in attempts in a university network.
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When considering a dictionary in a broader sense, dictionary attacks have been

successful in a variety of biometric security factors. One such example is a dictio-

nary of fingerprints (real and synthetic) which has successfully been used to match

a large number of fingerprints, thus bypassing fingerprint security [140, 141]. Dic-

tionary attacks have also been successfully used for speaker verification. It was

shown that synthetic voices could match 20% of female and 10% of male voices for

the most secure configurations, with these figures rising as much as 80% and 65%

of female and male voices respectively for the least secure configurations [142].

3.4.1 Password Mangling

A common approach is the dictionary attack in combination with “mangling rules”,

which are grammar substitutions and modifications that aim to imitate human ten-

dencies during password selection. This can be one of the most important ele-

ments of a successful dictionary attack. For example, using the number 3 instead

of the letter e, adding a ! at the end of the password, capitalising the first letter,

etc. Those rules can be manually designed or automatically learnt from previously

cracked passwords [143].

The inclusion of mangling rules can produce password candidates that are likely

to have been selected by users when they are trying to comply with the password

policies that are enforced in the applications and services they use. For example, if

the password “dragon” is not accepted because it only contains lowercase letters,

and it is not of sufficient length, a password like “Dr@gon12” might be used instead,

where the first letter is capitalised and numbers and special symbols are also in-

cluded in the password. If the attacker has included a good ruleset, these added

security steps on the part of the user, which he might believe make their password

more secure, do not really pose a hindrance to the attacker.

It is important to note that mangling rules widen the set of guesses significantly,
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Table 3.1: Example rulesets for mangling [11]

Name Function Description Example Rule Input Word Output Word

Nothing : Do nothing (passthrough) : p@ssW0rd p@ssW0rd
Lowercase l Lowercase all letters l p@ssW0rd p@ssw0rd
Uppercase u Uppercase all letters u p@ssW0rd P@SSW0RD
Capitalize c Capitalize the first letter and lower the rest c p@ssW0rd P@ssw0rd
Toggle Case t Toggle the case of all characters in word t p@ssW0rd P@SSw0RD
Reverse r Reverse the entire word r p@ssW0rd dr0Wss@p
Duplicate d Duplicate entire word d p@ssW0rd p@ssW0rdp@ssW0rd
Duplicate N pN Append duplicated word N times p2 p@ssW0rd p@ssW0rdp@ssW0rdp@ssW0rd
Rotate Left { Rotate the word left { p@ssW0rd @ssW0rdp
Rotate Right } Rotate the word right } p@ssW0rd dp@ssW0r

because each new alteration has to be checked with all the password candidates

contained in the dictionary. This is why a balance has to be achieved between the

number of mangling rules to be tested and the time that can be afforded for the re-

covery process. There are common mangling rules that are used by the community,

such as the Hashcat [144] Best64 rules and other more extensive rulesets.

For example, the Best64 rules include appending popular single and special

numbers at the end of the password, appending or overwriting high frequency char-

acters, “leetifying” which is the process of replacing letters by similarly looking num-

bers or special characters and rotating the password. Some of these substitutions

can be seen in Table 3.1 These mangling rules can also be generated automati-

cally from data breaches, e.g., using the PACK suite of tools [145]. The input for

these tools can be a list of passwords obtained from one or several data breaches

or humanly designed on purpose.

3.4.2 Password Cracking Dictionaries

Dictionary attacks remain to this day one of the most popular password cracking

attacks, especially for offline attacks that allow unlimited attempts. Nowadays, they

are commonly executed with the use of dictionary lists that stem from leaked lists

of passwords from data breaches. The advantage of using real-world leaked pass-
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words in a dictionary attack is that they already contain all the important information

about the choices and habits of real users when it comes to password creation.

Of course, dictionary lists can also be created by attackers, in many cases by

combining a number of different leaked password lists to customise to a specific

target. For example, if the attacker is limited in their number of attempts, they might

prefer a smaller dictionary list that contains the most popular passwords, relying on

the knowledge that users often choice convenience and memorability over security.

Leaked dictionary lists can be used as they are for a variety of attacks, not just

dictionary attacks. For example, they can be used to derive mangling rules as de-

scribed in Section 3.4.1, thus creating a set of mangling rules that closely imitates

user choices. They can also be used as training sets for a variety of Machine Learn-

ing (ML) password cracking techniques, as those that will be described in the up-

coming Section 3.5. In many cases in literature, dictionary lists are also referred to

as wordlists, and these terms can be used interchangeably.

3.4.3 Real-World Password Cracking Dictionaries/Leaks

As mentioned in Section 2.5, many significant data breaches have happened in the

last 20 or so years that have exposed valuable information of users, usernames,

passwords, biometric data, social security information and so on. In many cases,

the passwords that have been exposed in these data breaches have been plaintext,

therefore creating ideal dictionary lists for password attacks. This is because a

hashed password list from a data breach, especially if it has been hashed with a

slow hash function, cannot always be recovered in its entirety. In that case, it can be

assumed that some of the hashes that have not been cracked could constitute some

of the stronger, more secure passwords, therefore not accurately representing the

entire spectrum of users’ password choices.

Some of the most popular data breaches of the 21st century include social media
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accounts such as the LinkedIn data breaches of 2012 and 2021, the Yahoo data

breaches of 2013 and 2014 and the Myspace leak of 2013. These and more data

breaches have been studied extensively for research purposes, with Layton and

Watters looking at the tangible cost of some data breaches for the company and

Confente et al. looking at the effect on reputation for the company. Studies have

been conducted on large leaked lists of passwords from data breaches, such as

RockYou dataset containing 32 million accounts [12] and the Yahoo dataset [109]

containing 70 million accounts, for the purpose of extracting guessing statistics for

these leaks.

3.5 Artificial Intelligence and Machine Learning At-

tacks

Similarly to such automated generation of rules, modern approaches to password

guessing rely on a ML approach exploiting the enormous quantity of real human-

chosen passwords from a leaked database.

3.5.1 Markov Models and other Statistical Models

Probabilistic Context-Free Grammar (PCFG) is one example of such a modern ap-

proach, initially released in 2009 [134] and recently updated to make it one of the

most successful techniques. This approach is based on dictionary attack princi-

ples [148], and focuses on the calculation of the probability of each grammar [149].

They are based on Markov chains, and many password guessing tools are making

use of them. PCFGs models are variants of context-free grammars, extending them

similarly to how hidden Markov models extend regular grammars [150].

In one experimental scenario, Houshmand et al. [151] tried to use context-free

grammars to recover passwords from popular data leaks stored on a hard disk. The
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researchers implemented filtering techniques to reduce the number of tokens that

could be potential passwords, and then calculated the probabilities of the remaining

tokens using context-free grammars. Subsequently, three different algorithms for

ranking the tokens were employed and the results obtained. Their results demon-

strated that a robust filtering of the tokens, so that only strings that have well-known

password characteristics will be checked, and the 1-by-1 ranking algorithm correctly

identified the majority of passwords in the disk and even those strings that were

mistaken for passwords were indeed very possible password candidates.

Ordered Markov Enumerator (OMEN) [152], is a Markov model-based password

cracker that outputs password candidates in decreasing probability, thus speed-

ing up the password guessing process. PRobability INfinite Chained Elements

(PRINCE) [153] makes use of one input wordlist by creating “chains of combined

words”. PRINCE [153] creates intelligent chains to all combinations of words from

the input wordlist.

These techniques have a good success rate when they are used to recover pass-

words from average users, as they are designed or trained to reproduce the average

human behaviour. When considering a single targeted user, additional information

might or should be considered to increase the success ratio. A simple example is

that the chances of a dictionary attack relying on an English wordlist may be low if

the target is not an English speaker.

3.5.2 Neural Networks and Generative Adversarial Networks

In the last few years, methods based on ML and neural networks have arisen,

which in many circumstances have shown to outperform traditional methods. One

such method is the neural network-based solution from Melicher et al. [154], which

leverages a neural network to model human chosen passwords and assess their

strength and guessability. This method outperformed state-of-the-art methods when
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the guess number was high and the password policy not traditional. According to

the authors, a big advantage of neural network-based methods over probabilistic

context-free grammars is that they can be compressed without endangering the

success of the outcome.

PassGan is another very well known approach which uses a GAN to learn pass-

word rules directly from leaked password lists and thus replaces human-generated

password rules [113]. The GAN generated passwords were created using a sub-

set of RockYou as the training set and managed to crack 43.6% of unique pass-

words from the rest of the RockYou dataset, and 24.2% unique passwords from

the LinkedIn dataset. According to the authors, an advantage of this approach is

that PassGAN can produce an unlimited number of guesses, unlike rule-based ap-

proaches which are limited by the number of rules and the size of the input wordlist.

For PassGAN, this effectively increases the number of passwords found as the num-

ber of guesses increases. This becomes even more evident when the authors con-

sider a hybrid approach of combining PassGAN to Hashcat.

Another development in the field considers the combination of PCFG with a

GAN. This approach is called GENPass and consists of a PCFG + Long Short-Term

Memory (LSTM) password generator, where LSTM is a kind of Recurrent Neural

Network [155]. In their experiments, the authors looked especially into cross-site

tests with their model considering multiple datasets for training with a GAN, there-

fore ensuring that the output dataset is general to all. This provided a higher number

of passwords found compared to just using a few different input datasets.

Looking to improve the guessability of existing methods, Yang et al. proposed

VAEPass, a lightweight password guessing model that uses a Variational Auto-

Encoder (VAE), where its encoder and decoder are Gated Convolutional Neural Net-

works (GCNNs). The authors demonstrated that this method outperformed Pass-

GAN on both one-site and cross-site tests, while also managing to do so in 11% of
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the training time [156].

3.6 Password Cracking Tools and Algorithms

There are many different password cracking tools, some of which have been around

for years, like John the Ripper [157] and Hashcat [144]. Many commercial, free and

open-source passwords guessing tools are currently available, e.g., Passware [158],

Elcomsoft [159]. Those tools simultaneously leverage both the CPU and GPU to

increase performance. There are also FPGA approaches, such as SciEngines ded-

icated hardware [160]. However, FPGAs are typically a more suitable choice to

evaluate specific functions, especially when power consumption is an issue [161].

Password cracking contests are also often organized, helping to better grasp the

capacity of experts in retrieving passwords; the most famous of which being the

Crack Me If You Can Contest [162] from KoreLogic held during DefCon.

Password cracking tools are mainly used for criminal purposes, although they

can be used legally from law enforcement officers or administrators. These tools

have evolved over the years in order to keep up with the ever-changing password

landscape and nowadays, there are applications that work on various platforms and

OS supporting heterogeneous protocols and attacking multiple targets concurrently.

A non-exhaustive list of some of the most popular tools used in password cracking

is included below.

Password Cracker works on Windows and is a great tool for recovering lost

passwords, as it allows access to most passwords stored in Windows applica-

tions [163].

Brutus Password Cracker also works on Windows, but it aims at retrieving

passwords and usernames from websites, applications and OS. It uses dictionary

attacks for password cracking, but while it works for a variety of online applications,
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it cannot be used for email accounts or social media [164].

Cain and Abel is also a Windows-based password cracking tool. It uses a vari-

ety of techniques to crack encrypted passwords, and also offers extra features such

as sniffing network traffic and recording Voice over IP (VoIP) conversations. Thus, it

is widely used by a variety of specialists [165].

OphCrack makes use of rainbow tables to crack Windows passwords. It’s a free

tool with a simple interface [166].

John the Ripper is one of the most popular password cracking tools available,

and it is utilised throughout this thesis. It was developed in 1996 and can be used

with Unix or macOS. It has various attack modes single crack mode, wordlist mode

and incremental mode‘[157].

THC Hydra is an open-source online password cracking tool that can be used

for different protocols running under various OSs [167].

Medusa is a command line password cracking tool with a modular design that

uses thread-based parallel testing to crack passwords of remote applications [168].

CrackStation is a free online service for password cracking. It is based on a

Dictionary Attack, combining words and passwords leaks using precomputed lookup

tables. The lookup tables were created by extracting every word from Wikipedia, as

well as adding already leaked passwords from data breaches. Word mangling was

also applied. The one drawback of these lookup tables is that they do not work with

salted passwords [169].

Aircrack-ng is a tool for cracking Wi-fi passwords and network traffic monitoring.

It can work on various OSs and supports cracking for Wi-Fi Protected Access (WPA)

and Wired Equivalent Privacy (WEP) passwords [170].

L0phtCrack is an open source application for testing password strength and for

password recovery in Windows. It employs a variety of attacks such as dictionary,

brute-force and hybrid attacks and more recently rainbow tables [171].
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RainbowCrack is a desktop tool for cracking password hashes in Windows and

Linux platforms, using memory trade-off precomputed lookup tables [172].

Hashcat is another open source tool that is used in this thesis. It works on

multiple OSs (Linux, Windows, macOS) and multiple platforms (CPU, GPU, etc...)

and offers multiple attack modes for password cracking [144].

3.7 Future Impact of Quantum Computing

According to Grover’s Algorithm, a quantum computer can offer a quadratic speed-

up for the search of an unsorted database compared to deterministic and probabilis-

tic methods that need O(n) steps [173]. As a result of this significant speed-up, the

wider use of quantum computers in the future can result in a quadratic speed-up in

password cracking techniques, and more specifically the computation of hashes.

It was shown by Dürmuth et al. that in large-scale attacks, a quantum computer

can take advantage of the bias of human chosen passwords while still gaining the

quadratic speed-up. In two experiments with real-world data, they showed that on

a fixed user the number of hash evaluations falls to 6400 while in a scenario with

the weakest 10% of passwords less than 200 hash evaluations per password are

needed.

As a means to counter against this, quantum computer speed-up suggestions

include making users choose longer, more secure passwords. This is a highly im-

practical solution, considering the difficulty for users to memorise passwords along

with their tendency to reuse them, or not store them safely. Another suggestion

put forth by Wang et al. is the use of quantum copy-protection of point functions for

password verification. In this case, the authors avail of the property of quantum in-

formation to not be copied and use point functions that have the ability to map n-bit

strings to a 1-bit string. Point functions are special functions that map n-bit strings
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to a 1-bit string, in which case the password can be thought of as the point function

and only the correct password can provide the correct output. Another work looking

into how to leverage Quantum information for One Time Password (OTP) puts forth

a Quantum OTP based on users’ biometrics [176].

3.8 Users’ Habits in Password Creation

A password is a sequence of alphanumerical and/or special characters used to val-

idate that a user has the right to access a computer system, an application, or

an online service. The average number of passwords users needs to remember

is in constant evolution and diverge a lot, from 27 in one online survey [177], to

191 in another‘[178]. Unfortunately, users find it difficult to recall and manage their

passwords for all the accounts they maintain, and this results in inherent security

issues [109, 179, 180].

3.8.1 Password Reuse

A typical consequence of this increasing number of passwords to memorise is that

user either select easy-to-remember but weak passwords [181] or reuse their po-

tentially complex password [182, 183], sometimes applying small modifications or

simply following a predefined construction process [184]. These types of modifica-

tions ranged from simple substitutions of alpha characters by similar looking num-

bers, such as the English letter ”e “replaced by number ”3 “or number ”1 “replaced

by the special symbol ”! “. These are common substitutions users resort to, when

the password policy dictates that the password must comply with certain rules.

A study showed that 80% of users kept their current passwords when it was pos-

sible, while 16% changed the current password to one of the passwords they were

using on another site and only 4% changes it to something completely new [185].
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One of the biggest security problems arising from password-reuse occurs when

considering data breaches. Following the European Union’s General Data Protec-

tion Regulation (GDPR)‘[186], users are notified when a service they are using is

compromised, and they are strongly encouraged to update their credentials.

However, even when the user does so, the other accounts of the user that are

protected by the same passwords are still at risk. According to a security report

by the popular Virtual Private Network (VPN) service Surfshark, the number of data

breaches that occurred in the third quarter of 2022 was increased by 70% compared

to the second quarter, with more than 100 million records being leaked [187]. The

increase in data breaches has been exponential in the past decade, with many

well known companies falling victims in 2022, such as Twitter, Microsoft and Uber.

These data breaches can expose passwords (plaintext or hashed) and sometimes

accompanying information, such as emails, names, addresses, etc with potentially

opening doors to many other services, some of them being critical for the user or

the society.

For an attacker wanting to access a specific account belonging to an individual,

the password cracking attack could be reduced to a simple lookup for a match in

leaked lists. In fact, studies of password habits of users have shown that users

tend to reuse passwords that they need to enter frequently [188] and they tend to

underestimate the consequences of doing so.

Furthermore, even when passwords are not reused explicitly, there are password

ties between older and newer passwords of the same user [189]. But, even in the

good case where that particular user does not reuse the same password across dif-

ferent services, knowing their previous passwords or other information about them,

can give great insight to the cracking process [5]. To this end, TarGuess, a frame-

work that makes use of Personally Identifiable Information (PII) and cross-site in-

formation, has been proposed to make targeted guesses of users’ passwords, and
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it was shown to outperform current models for both the cases of non-savvy and

security-savvy internet users [190].

3.8.2 Users’ Preconceptions Regarding Password Security

But even if previous passwords of a user are not known, a case can be made that

knowledge of passwords of other users can speed up the process [4]. In fact, studies

have shown that there are common misconceptions people fall prey to when creating

their password, such as thinking that by adding a symbol at the end of the password

they make it more secure [184].

As revealed in an American survey with users from different background and

ages [191], users have generally a biased understanding of password security. As

highlighted in this study, participants have overestimated the security increase ob-

tained by adding digits in the password, and underestimated the predictability of

using keyboard patterns and common phrases. In a survey by Ur et al. [192], par-

ticipants not only overestimated the added security of appending passwords with

symbols or digits at the end, but also chose to reuse passwords or elements of

passwords frequently. Another common phenomenon is the integration of personal

information in the password chosen by users.

3.8.3 Role of Age, Ethnicity and Profession in Password Selec-

tion

In a study by Liu et al. [193], where more than 20 million pieces of data from Chi-

nese users were analysed, and it was found that professionals used passwords with

an average length of from 8 to 11 digits, while students tended to use shorter pass-

words. Concerning the complexity of passwords, they concluded that more than

50% of the users have passwords with only digits and less than 30% have a com-

bination with special characters. The analysis also revealed that more than 12% of
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the professional users include birthday and mobile phone numbers in the password

and moreover an 11.5% used their username and e-mail to create the password.

In another study of Chinese passwords [194], the use of Pinyin in a pure form

or in combination with dates and numbers accounted for 26% of the total, which

seems to suggest that the use of English characters is widespread. It was also

pointed out, that in the case of pure Pinyin passwords they were constructed with

only 2-4 Chinese characters. In a similar vein, Bonneau [195] analysed 70 million

passwords from the Yahoo data breach. Specifically, they explored whether dic-

tionary lists optimised for the user-defined language preference would impact the

success of password cracking. It was found that for all user-defined languages,

the dictionary optimised for that language performed better than the global one, but

some language crossover was found. For example, the dictionary optimised for Chi-

nese users performed better for Greek users than the global dictionary (9.3% and

8.6% respectively).

In a case study of passwords in North Macedonia, where a dataset of passwords

from recent high school graduates was analysed, it was found that the passwords

contained therein were found to be weaker than the baseline, already weak datasets

they were compared against [196]. The authors stipulate that this is a result of a

direct link between password security habits and general literacy.

3.8.4 Password Tendencies of Users

Usually, users create passwords that contain familiar models, including the expres-

sion of feelings, names, dates, and places. This was demonstrated by Veras et al.

[197] where their semantic approach significantly improved the number of recovered

passwords compared to state-of-the-art approaches. Veras et al. [198] focused on

the semantic meaning of numbers and especially dates in passwords, finding that

4.5% of all passwords in the RockYou dataset were dates. In 2006, Kuo et al. [24]
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Table 3.2: Top 10 digits found in RockYou [12]

Digit Percentage Digit Percentage

1 10.98% 123456 1.74%
2 2.79% 12 1.49%

123 2.29% 7 1.20%
4 2.1% 13 1.07%
3 2.02% 5 1.04%

Table 3.3: Top 10 single special characters found in RockYou [12]. To compute the per-
centages on this table, only the passwords containing at least one special character were
considered

Special Character Percentage Special Character Percentage

. 17.81% @ 7.19%
_ 14.72% * 6.54%
! 11.34% # 3.92%
- 19.25% / 3.01%

<space> 8.72% & 1.84%

created a survey and asked users to input either regular passwords or mnemonic

passwords that were constructed by phrases and sentences. The authors found that

the majority of the mnemonic passwords contained external information, while only

13% of the participants in the control group did the same.

Weir et al. [12] analysed the passwords of the RockYou dataset. Some interest-

ing statistics include the Top 10 numbers found in the dataset contain either single

digits or number sequences, as can be seen in Table 3.2. What is interesting about

number characters in the RockYou dataset is that the number was found after the

letter fragment in 64.28% of the cases and before in only 5.25%. This suggests

that users prefer to add numbers at the end of their password, perhaps to comply

with the password policy after choosing a solely alphabetical password. The Top 10
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Table 3.4: Character sets in RockYou passwords according to password length [12]

Character Set 7+ Chars 8+ Chars 9+ Chars 10+ Chars

Contains Digits 57.5% 59.5% 60.2% 60.0%
Contains Special Characters 4.4% 5.1% 6.6% 8.0%

Contains Uppercase 6.5% 6.7% 6.9% 7.1%
Contains Only Lowercase and Digits 89.2% 88.4% 86.7% 85.1%

single special characters found in RockYou passwords that contained at least one

special character can be seen in Table 3.3 and finally a distribution of how character

sets appear in passwords of different lengths can be seen in Table 3.4.

In the case of Chinese users, and as far as contextual information is considered,

Zeng et al. [199] performed a sentiment analysis on three different datasets and

found that sentiments (and in their majority, positive ones) were chosen more often

than other contextual information such as places and names.

Passwords based on meaningful common words, personal information, and pat-

terns are considered as more memorable [200]. Also, culture and country of origin

seems to play an important role in password selection [201].

3.8.5 Purpose of the Password

It seems that users are willing to accept more difficult authentication methods in

the case of financial and e-mail accounts, but not for infrequently used web ac-

counts [202]. They are also more likely to accept more strict password policies on

a PC, than a smartphone or tablet and choose safer passwords [203]. It was also

shown that in many cases, users include domain information in their password, i.e.,

the name of the domain the password is for [204]. Finally, a study that compared

a Dynamic Personalised Password Policy (DPPP) that takes into account a user’s

personality traits when prompting a user to form a secure password, with commonly

58



3.9. MEASURING PASSWORD STRENGTH

used password policies, showed that the first resulted in passwords that are more

resistant to guessing attacks [205].

3.8.6 Password Managers

In a study conducted with students and personnel from George Washington Univer-

sity it was found that while password reuse was a serious issue, with 77% of par-

ticipants admitting to it, the number of participants that used an external password

manager (instead of a browser built-in one) were found to reuse passwords less

that their counterparts [206]. It was also shown that people with external password

managers were more likely to use the random passwords created by the password

manager, instead of creating their own, as was the case with those that used built-in

password managers. In the same study, it was found that the most chosen reason

for someone to use a password manager was not the perceived added security it

would provide, but the ease-of-use.

In terms of academic research, when these datasets were stored in plaintext,

100% of the credentials in them were stolen by the attackers, which can provide

useful insights into password choices of users, but it’s extremely dangerous other-

wise.

3.9 Measuring Password Strength

Password strength meter is another field of study that is continuously evolving fol-

lowing the sophistication of password cracking attacks. The most basic strength

meter is a simple 0/1 metric where basic rules must be respected by the password

to accept it, and reject it otherwise, like the LUDS-8 from the NIST proposal back in

2004 [207].
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3.9.1 Password Guidelines/Policies

The password policy in place plays a role at the strength and guessability of a pass-

word. It has been shown that putting a password policy in place forces users to

have more secure passwords, whereas users left to their own devices will generally

choose weaker passwords [193]. But the stronger passwords required by password

policies may lead users to either having trouble remembering and ending up writing

down their passwords [24] or to use common techniques for bypassing the require-

ments without building a strong password [208]. For example, Password1! fulfils

the requirement set by one of the most well known password policies, LUDS-8, for

uppercase, lowercase, symbols and numbers and is above eight characters, but

would not be considered a strong password.

3.9.2 Users’ Attitude About Password Strength Meters and Poli-

cies

Stringent meters force users to spend longer time creating and changing their pass-

word until they satisfy the requirements, but they also found the password meter

annoying and in some cases did not pay attention to satisfying the meter [209].

On top of this, this procedure causes great difficulties for users in creating and re-

membering their passwords [24]. Weak passwords can be remembered, but strong

passwords are more likely to be written down [210, 211].

There is therefore an inherent weakness in knowledge-based authentication

methods. In a study by Brown et al. [212], 15% of all passwords for email access

were assigned to the users, and they had not generated them themselves. Finally,

Komanduri et al. [213] concluded that increases in entropy of passwords often cor-

relate with decreases in usability, suggesting a trade-off between these two aspects.
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3.9.3 Commercial Strength Meters

Enforcing the selection of strong passwords can help to protect digital systems from

password cracking attacks. Password strength meters fulfil strength evaluation re-

quirements, forbidding users from inadvertently selecting weak passwords. How-

ever, a comparison study conducted on strength meters from some of the most

popular websites and systems showed they are highly inconsistent [98]. The same

password on different strength meters can be evaluated from adequate to great,

depending on what parameters each meter uses for its evaluation. These parame-

ters include entropy, length, estimated number of guesses it would take to crack the

password, etc.

IT designers have created many password meters [102] and many of them can

be found on the Internet as free tools to check a given password’s strength, such

as Passwordmeter [214], My1login [215] and LastPass [216], with Kaspersky [217]

pointing out to never enter your real password.

Concerning the password strength meters which are included in certain web

pages, they are unable to assess precisely the number of guesses one needs to

retrieve a password [218], as this would demand a lot of resources and time. Yang

et al. [219], pointed out that commercial meters need to be improved due to the

inconsistent and inaccurate feedback they provide compared to other meters. En-

tropy, which is traditionally used for measuring the strength of a password, is prov-

ing inadequate when intelligence-based attacks are concerned [220]. In the case

of graphical passwords, Heidt and Aviv [221] pointed out that most strength meters

incorrectly assume a linear relationship between pattern features and puts forth a

new meter that takes into account the guessability of the pattern.
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3.9.4 Advances in Measuring Strength in Passwords

The community in this field remains active and new password strength meters have

been recently designed, each of them following a different approach. Galbally et al.

[218] used a very large publicly available dataset of passwords to propose a flexible

probabilistic framework, that can be adjusted to different environments or password

policies and able to objectively measure the strength of a given password. A multi-

modal strength metric was proposed by Galbally et al. [222] based on the implemen-

tation of two new probabilistic Markov chain methods merged with an attack-based

module and a heuristic-based module.

Guo and Zhang [223], proposed a Lightweight Password-Strength Estimation

Method (LPSE), which performed better than other existing LPSEs, in terms of re-

sponse and storage space, providing at the same time an excellent identification of

the strength of the password.

The complexity of the subject led Kelley et al. [224] to propose their technique

for evaluating password strength against a variety of password-guessing algorithms.

Their algorithm can be trained to increase awareness of password strength.

One of the most widely accepted password meters is zxcvbn, which is used by

Dropbox and probably in many others, as it is an open-source solution [225]. The

meter ranks the password between five classes, from 0 to 4, taking into consider-

ation many criteria, with class 0 containing the passwords that are easier to crack

and class 4 those containing the strongest, harder to crack passwords.

Some meters rely on cracking techniques to assess the probability the password

would be produced by such techniques, such as the OMEN-based solution [226]

or PCFG-based ones [227, 228]. Based on the latter, the fuzzyPSM, Dong et al.

proposed the RLS-PSM, where RLS stands for reuse, leet and separation, taking

these common altering techniques of users into account and producing, according

to the authors, better results. Some meters use ML techniques such as the Neu-
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ral Network-based meter of Melicher et al. [154] extended by Ur et al. [230], the

Natural Language Processing model by Guo and Zhang [231] and Deep Learning

model by Pasquini et al. [232]. In a comparative analysis by Golla and Dürmuth

[233], it was shown that when it comes to password strength metrics proposed by

academics, fuzzyPSM [228], RNN Target [154] and Markov (Multi) [234] produced

the best results.

While increasing the security of digital services by enforcing users to select

strong and safe passwords, those meters also play a role in the analysis of password

datasets to better understand human tendencies but also classifying passwords in

classes of strength. The use of password strength meters can have the desired

effect of users choosing more difficult passwords to fulfil the meter’s requirements,

but subsequently they might need to resort to writing the password down because

they cannot remember them [209]. Furthermore, it has also been shown, that the

results found by the various password strength meters when evaluating the same

passwords have been widely inconsistent [235].

3.9.5 Password Strengthening Techniques

Various techniques regarding the creation of passwords with strengthening in mind

have been proposed. The simplest ways usually proposed by IT administrators are

inelastic rules for the length of the password and the type of the characters to be

used, as well as a specific tolerance to the number of times credentials can be

inputted incorrectly before the system locks the user out.

More sophisticated methods, such as the creation of mnemonic phrase-based

passwords is another proposed way, where users usually take the first letter of each

word of a favourable and memorable phrase and create a new password. It was

found that the majority of users based these mnemonic passwords on phrases that

can be found on the Internet, which could create problems concerning the strength
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of the produced password and especially if such a mnemonic dictionary is included

in password cracking tools [24].

Another alternative possibility is the use of graphical passwords [236, 237]. It

is easier for users to remember pictures than complex text passwords. Graphical

passwords can be utilised as a second step of verification, after the text password,

in order to strengthen the verification process. It was found that users are more

likely to remember graphical passwords and for longer [238].

Similar is the use of a token, but it is considered inconvenient and costly [239].

The combination with biometrics is another aspect. It is more suited for getting

access to local machines and requires a high cost to implement in other activities.

Furthermore, it should be noted that the use of password as a back-up or recovery

option will not easily be diminished [240]. Finally, it was found that password security

training can bridge the gap between the Information Technology (IT) administrators

and the end users [241].

3.10 Discussion of Related Work

As the related work on the field shows, passwords are a topic of research that has

occupied scientists for decades and will continue to do so, as it looks to remain

the prevalent method of authentication. Different types of passwords have been

introduced, like graphical passwords and other authentication keys like tokens and

biometrics. Even so, the textual passwords remain the key method of authentication,

due to its ease of setup and use by the majority of users.

There are various types of attacks to gain access to systems that are password

protected or encrypted devices, but in all those cases, the setup of the system di-

rects the type of attack that could be successful. For example, in an online system

with a limited number of attempts where there is no inherent system vulnerability to
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be exploited, a brute force attack will most likely come up short.

Dictionary attacks, in many cases, are the best of both worlds. Computationally,

they are easier to carry through compared to a brute force attack, as the number of

candidate passwords will be smaller. But their true advantage is that they take into

account the tendency of people to resort to the familiar and memorable, i.e., short

passwords that are meaningful to them or easy to remember.

For the dictionary attack, which started quite literally as an attack with English

language dictionaries, nowadays, the dictionary consists of password lists from pre-

vious data breaches, aiming to exploit password reuse and the principles behind

users’ password selection. One gap in the literature, is in the creation of dictionary

lists that take into account not only the contextual information of previous passwords

of unrelated data leaks, but also the context for the which the current password is

used for.

This means the creation of dictionary lists that are tailored to the purpose of

the password they are trying to guess or the system to which they are trying to

gain access. Considering the context of the destination can impact and increase

the likelihood of success for a password cracking operation. A detailed look at the

methodology for such an operation is described in Chapter 4.
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Chapter 4

Methodology

4.1 Introduction

Access to the content of the encrypted devices of a suspect can be crucial for the

outcome of an investigation [15]. The timeliness of accessing potentially case-

progressing information can be paramount in certain scenarios, e.g., kidnapping

cases or an imminent terrorist attack investigation.

There are various password cracking algorithms and tools available to investiga-

tors with different approaches to password cracking. In real-world scenarios, there

are situations where the approach that has the highest chance of success might

not be viable due to time constraints. It is up to the investigator to decide the bal-

ance between likelihood of success and time elapsed. For this reason, investigators

might seek alternative methods of password cracking in these specific scenarios

aimed at minimising the duration of the process. One viable alternative approach is

to leverage the role of context in a user’s password selection.

As the related work presented in Section 3.8 shows, users are creatures of habit,

and they tend to navigate towards what is familiar - and therefore memorable - when

it comes to selecting their passwords. This can be proven to be an advantage to an

investigator who requires access to a password protected device or system. Three
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scenarios where the targeted approach that is described in this work will be pre-

sented in the following section, that will be referenced throughout this thesis.

The rest of the chapter is organised as follows: Section 4.3 describes the various

datasets that have been used throughout this thesis, containing datasets for evalu-

ation as well as datasets that serve as baselines to compare the produced results

against. Section 4.4 describes the analysis of a large corpus of real world passwords

in order to identify the role of context in password creation, by breaking down the

passwords into their constituent fragments and classifying them according to their

semantic meaning. Section 4.6 provides the methodology for examining the hypoth-

esis that password selection is to some extent connected to the website/service the

password is aimed for, while Section 4.7 looks at the different measures to be taken

into account when deciding the quality of a wordlist for password cracking. Sec-

tion 4.8 provides the framework for evaluating generated wordlists, and Section 4.9

includes the methodology for creating custom dictionary lists for any topic. Finally,

Section 4.10 looks at techniques for optimising the generated dictionary lists and

ranking password candidates according to their contextual proximity to the theme of

the dictionary list or target.

4.2 Three Scenarios for Contextual Password Crack-

ing

In their majority, administrators nowadays take great steps and employ sophisticated

measures to ensure the safe transmission and storage of confidential information

such as login credentials. This is even more apparent with services in the financial

sector such as e-banking and online trading websites, where strict password policies

are enforced, and sensitive data is stored in hashed form.

When it comes to security of online systems, typically, the password remains
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the weakest link to gain entry [242]. As has already been discussed in Chapter 3,

there are many password creation techniques that many people employ when they

create their passwords that have been known (and in cases abused) by adversaries.

Many of these techniques rely on personal information being used in the password,

something that can be leveraged against the owner of the password.

In this manner, the approach that is examined in this thesis is the creation of

password candidates lists (dictionaries) bespoke to each individual or a community

of individuals. Often, the information needed for something like this is easily and

publicly available online, e.g., accessible on their social media profiles or profes-

sional websites. In the case of a law enforcement investigation, additional informa-

tion could be obtained through warrants, interrogations, etc.

Taking the bespoke approach one step further, thematic dictionary lists around

specific topics can be assembled. In terms of law enforcement, there is a significant

potential benefit from this in expediting cases. During an investigation, it can be of

paramount importance to gain access to encrypted devices, an often insurmount-

able task given limited resources [35].

The reminder of this section presents three scenarios for which the bespoke

dictionary approach would be suitable.

4.2.1 Online Community Scenario

The weakness of the password, when it comes to the security of online services,

is further accentuated when an attacker is focusing on gaining access to a multi-

user system and not targeting any one specific user. A single weak password could

grant attackers access to such a system, rendering the effort and precautions taken

by security concerned system administrators void. In these cases, attackers fo-

cus on generic approaches – effectively modelling the popular habits and trends

of real-world users’ password choices [243]. These attacks customarily use large
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dictionaries of human-created passwords available online from previous data leak-

s/breaches. These attacks have evolved to become more refined and sophisticated

to compensate the increase in computational cost of the underlying algorithms and

the strengthening of password policies [13].

Figure 4.1: Online community scenario

As part of this thesis, the role of context in an attack like this was evaluated. In

the online community scenario, the goal is to gain access into a password protected

community of users that is centred around one topic. One such case would be

69



4.2. THREE SCENARIOS FOR CONTEXTUAL PASSWORD CRACKING

if LEA have knowledge that in a closed community about manga, there is covert

illegal activity, and they want to gain access to that community. In such scenario,

the successful guess of any user’s password is a success. This is obviously simpler

than having only one target and limited attempts. When many targets are involved,

there is a higher chance that at least one of them has a less secure password.

Context could still be considered in such scenario for an online attack, with a

limited number of tries across all accounts. If this is an online community or forum

about manga, a logical assumption - and one that will be put to the test in this thesis

- is that there is a higher chance of encountering passwords that are thematically

closer to manga in this community than in a community that is not related to this

topic. The online community scenario can be found in Figure 4.1. As can be seen

there, contextual dictionaries that are thematically close to the topic of the commu-

nity can be employed in order to test contextually relevant passwords against all

users of the forum.

4.2.2 Offline Dictionary Attack

Of course, there are also targeted attacks that focus on one specific user. These

can be both online attacks, with a limited number of guesses, or offline attacks with

an unlimited number of guesses. This is for example the case when law enforcers

are attempting to retrieve evidence from a suspect’s online/offline account or when-

ever encrypted devices/container are encountered during digital forensic examina-

tion [15]. Generic approaches can be attempted there, as they rely on mimicking

user tendencies, or they leverage passwords originating from actual data leaks.

However, this use case can also benefit from a more targeted, context-based

approach. This targeted approach should take into account the fact that users often

follow certain habits when creating their passwords. Their use of numbers and sym-

bols is often meaningful, and the placement of capital letters and non-alphabetical
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Figure 4.2: Online individual scenario

characters is often predictable, something that will be demonstrated in great detail

in the following sections.

Users choose passwords that are memorable or meaningful to them. This is due

to the fact that a typical user maintains tens of different passwords for different sys-

tems and devices. Since these password habits exist, the knowledge of personal
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information about a specific user can lead to more educated guesses of their pass-

words. This information could include important dates in their lives, names of family

and friends, related locations, as well as their interests, likes, and dislikes. A partic-

ularly insightful piece of personal information could turn out to be their password, or

part thereof.

Figure 4.2 portrays an example of this scenario. If LEA are encountered with

an encrypted computer of a suspect that they need to gain access to, to further an

investigation, personal information about said suspect can be gathered in a number

of ways.

One such way is by looking at their online presence, their social media accounts,

what they post about, who they follow and interact with, the type of content they

consume. This will help identify areas of interest of theirs, as well as insight into their

personal circle of friends and acquaintances. Furthermore, previous passwords of

theirs can offer great insight into their thought process behind password selection.

Do they tend to capitalise the first word of the password? Do they add numbers

at the end? Do they reuse passwords regularly? And finally, what other type of

information can be gathered from their other devices or from objects in their room or

house.

All this information can be used, along with mangling rules, to create a smarter

dictionary that is tailored to that specific suspect. This step is crucial since this

dictionary will be generated, so mangling rules can help simulate human behaviour

when it comes to password cracking.

4.2.3 Combination Approach

In any digital investigation, this bespoke dictionary generation step could be one of

the first after collecting evidence on the individual related to their interests, hobbies,

and other personal information. However, it might prove fruitful not to choose the
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bespoke dictionary approach from the get go. The reason for this is that users still

tend to choose passwords that are not very difficult and possibly easy to crack with

more unsophisticated methods, i.e., exhaustive search or “off-the-shelf” dictionary

attacks. It is reasonable to first eliminate weak password candidates with an ex-

haustive search before using the approach outlined in this work, or to pursue both

approaches simultaneously.

Furthermore, this exhaustive search can commence from the beginning of the

investigation as it does not require collecting any other information, as it is entirely

independent of any context. While the exhaustive search is carried out, evidence

and information that can help launch the bespoke context-based dictionary attack

can be collected.

This begs the question of where exactly in the password cracking pipeline the

proposed approach might fit. The answer is that there is no one-size-fits-all solution

to this question. If time is of the essence, and it is known that the suspect is someone

technologically and security savvy, then a reasonable assumption can be made that

an exhaustive search of up to 8 characters is not likely to produce results; therefore,

this choice may be skipped or postponed. If this is the case, but the process of

collecting evidence to launch the targeted dictionary attack is still ongoing, another

dictionary attack might take precedent. This case-by-case scenario is illustrated in

Figure 4.3.

Ideally, when talking about context-based decryption in a digital forensic setting,

experimentation would be conducted on real cases by a digital investigator focusing

on one specific target. But as this constitutes privileged/sensitive information, it is

not possible to do this in a research context. Therefore, the focus is shifted in this

work to “the community approach”, which can be evaluated using leaked lists of

real-world, human-chosen passwords stemming from data breaches.
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Figure 4.3: Combination approach scenario

4.3 Dataset Sources

In this section, the datasets that have been used throughout this thesis, either for

evaluation purposes or to act as baselines for comparison of the newly created

contextual dictionaries, are presented. More details about their use, the clean-up

process for them, if any, or any modifications to them will be discussed in the appro-

priate sections.

4.3.1 Have I Been Pwned

A very well known assembled list of passwords found in data breaches is Have I

Been Pwned (HIBP) [244]. The original website for Have I Been Pwned (HIBP),

was created by Troy Hunt, a web security expert, in 2013, to help users detect if

their email address(es) appear in data breaches. Its main purpose is to help victims

being aware that their accounts have been compromised, but it also serves as a
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blacklist for passwords and to highlight the seriousness of data breaches. In 2017,

Troy Hunt launched an API to check whether a given password appeared in a previ-

ously leaked database. In 2021, after 500 million of phone numbers were leaked in

the Facebook data breach, phone numbers are also searchable‘[245]. The current

version is version 8, and it contains about 850 unique passwords (corresponding to

around 11 billion accounts, on the accounts that duplicate passwords have been re-

moved). Figure 4.4 shows the amount of new leaked passwords from data breaches

that have been added over the years, and the increase in the last five years is stag-

gering.

The objective behind this tool is to reduce the password reuse phenomenon

and prevent credential stuffing attacks [246] by implementing a searchable pass-

word blacklist, as strongly encouraged by the latest NIST directive [101]. It also

serves to allow individuals to check if their passwords or other credentials (phone

number, username) have been compromised, orpwned. All the passwords from

various breaches have been concatenated in a single dataset and made publicly

available for companies, governmental services and institutions to implement their

own black listing of passwords independently. In addition, it has been utilised for

academic purposes, e.g., validating passwords created from song lyrics through the

haveibeenpwned Application Programming Interface (API) [247] and measuring the

frequency of compromised passwords in an Asian Pacific college [248].

4.3.2 Hashes.org

As mentioned above, HIBP is a dataset that consists of many different data breaches

concatenated together. For the scenarios outlined at the beginning of this chapter,

an evaluation against datasets stemming from single sources is needed. For this

reason, the datasets from hashes.org have been utilised. Hashes.org was a web-

site running from 2011 to 2020, with the goal of being a single point of reference for

75



4.3. DATASET SOURCES

Figure 4.4: Number of breached accounts listed in Have I Been Pwned

hashes and their solutions, where multiple users could contribute towards cracking

the hashes from various data leaks. The database contained a variety of hashed

password lists, from various communities and forums, as well as the cracked plain-

text passwords and metadata about the origin of the dataset and the percentage of

cracked passwords. The website was taken down in 2020, but the database was

obtained before that.

4.3.3 RockYou

Most dictionary attacks use wordlists that originate from one or more different data

breaches. The passwords in these data breaches are sometimes leaked in their

plaintext form, but more often they are hashed (and salted). This means that in order

to make use of these lists in dictionary and/or other password cracking attacks, the

passwords need to be cracked first. That is not always possible for 100% of the
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leaked data – meaning that it can be argued that some of these cracked lists do not

contain the “harder to crack” passwords.

One list that does not fall in this category is called “RockYou” and contains 32

million passwords that were leaked in 2009. Because RockYou was leaked in plain

text, it is a very popular wordlist that has been used by many researchers as a way

to extract insights on users’ password habits [249, 250] or as a baseline to compare

other attacks against.

4.3.4 Ignis

While the plain text passwords offer a significant advantage compared to an incom-

plete list from hashed leaks, one drawback of RockYou is that it was leaked in 2009.

Since then, password policies around the globe have changed and stricter measures

have been adopted – with passwords often needing to be longer and containing

more than one of uppercase, lowercase, number, and symbol characters. There-

fore, in terms of adopting a baseline to compare the contextual dictionary approach

against another dictionary that has been used at the later stages of this thesis is

Ignis-10M [251].

Ignis contains 10 million passwords from a variety of data leaks and was as-

sembled in 2020. A statistical analysis comparing its makeup against RockYou can

be found on the project’s GitHub. Besides Ignis-10M, smaller versions of the Ignis

wordlists are also included in the GitHub page, but the larger list always achieves a

higher success rate in all experiments and was therefore the one used.

4.4 Analysis of Real World Passwords

As a first step to tackling the issue of context in passwords, whether it be for the

community or individual approach, it is paramount to gather every bit of informa-
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tion regarding password selection from users. This will provide insight into their

choices when it comes to passwords, and some very useful statistics and patterns

will emerge. As discussed in Chapter 3, there is work that has been done in this

area, albeit these studies focused on smaller individual datasets with specific char-

acteristics. Some notable examples that have been already mentioned in Chapter 3

are the work of Mazurek et al., measuring password guessability for an entire univer-

sity and the work of Wang et al., which highlighted specific habits of Chinese pass-

word users. In 2010, the largest real-world password component and pattern analy-

sis performed was on 32 million accounts from the RockYou data breach [12]. This

analysis number increased to 70 million from a Yahoo data breach in 2012 [195].

No more comprehensive password pattern and component analysis has been per-

formed since, nor has any such analysis been performed on a very large corpus of

passwords stemming from several contributing data breaches. This was the motiva-

tion behind the work in this section.

4.4.1 Have I Been Pwnd Dataset

The source dataset used for this analysis is the Have I Been Pwned version 5

(HIBP_v5) password dataset. At the time this research had been conducted, five

incremental versions of this list had been released since 2017, with each newer

version containing more passwords, updated counts of each password’s occurrence

and the removal of “garbage” passwords, i.e., badly encoded, duplicates, etc. Ver-

sion 5 which was released in July 2019 is the one that was used for this research.

Since then three more versions of the dataset have been released, version 6 in June

2020, upping the number of unique passwords to 573 million, version 7 in November

2020 with a further 40 million unique passwords and finally version 8 in December

2021 with a further 38% new unique passwords, bringing the total to 847 million.

The dataset does not provide any additional information about each password
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such as the breach it came from nor the date discovered. However, it can be as-

sumed that the entries of the dataset come from the data leaks listed on the HIBP

website. The date spread of the total number of accounts compromised by those

data breaches is displayed in Figure 4.4 of Chapter 3.

Focusing on version 5, the total number of accounts compromised in these

breaches is over 9.4 billion. However, HIBP_v5 does not contain this number of

passwords. This can be attributed to several explanations. It is known that there

was no password associated with over 2.8 billion of the breached accounts. Fur-

thermore, as declared by Troy Hunt, the list is composed only of passwords that

were initially gathered in plaintext whereas the website can still list the username

as breached when the password is not stored in clear. That means that not all

passwords for which usernames/emails are listed are in the dataset.

This composition is not without consequence for the results of the analysis pre-

sented in this thesis, for the two following reasons. Firstly, the strongest passwords

could be missing from the list obtained by Troy Hunt if the original source was not

in clear text, as only the passwords that have been previously found are included.

This could skew the results of this analysis and wrongly underestimate the number

of users that choose secure passwords.

On the other hand, if the passwords were stored in plaintext, then the strongest

passwords are contained in the related leak. However, the corresponding ser-

vice/website was not following basic security recommendations for safely storing

passwords and sensitive information, which can easily lead one to believe that little

attention has also been given to ensuring that users choose passwords that adhere

to password policies and security recommendations. Even so, thanks to the large

size of the list, this analysis is relevant for an overwhelming proportion of accounts.

It is furthermore particularly challenging to obtain a dataset that contains the whole

spectrum of passwords, including strong passwords, to complement the analysis
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and bridge this bias.

4.5 Pattern Analysis

The first step of analysing real-world passwords is focusing on the types of patterns

that can be discerned from them. Extracting patterns that repeat on many different

passwords can provide useful insights on the tendencies of users to prefer one

or another way of building a password. The analysis of the patterns found in the

passwords can also be the stepping stone to identifying and extracting distinct parts

of the password for further analysis.

There are typically four classes of characters considered in the password anal-

ysis community; lowercase, uppercase, numbers, and special characters. Strict

password policies nowadays recommend (and in many cases require) all four types

to be included in a password, however that has not always been the case, with many

websites, especially in the past, enforcing no rules regarding the password makeup

or length.

In the architecture of a password, not only the combination of these four classes

of characters is important, but also the sequence. One of the goals of this password

analysis is to see which types of architectures are prevalent among users, if any.

Other work on the field, as shown in Chapter 3 showed prevalence of some archi-

tectures already, like the addition of numbers at the end of the password [220], but

on datasets of smaller size.

4.5.1 Masks

In password cracking, these architectures mentioned above are called masks.

Masks can be distinguished into two different categories, those that take into ac-

count the order of the different character sets in the password and those that do
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not. For example, when the sequence is not taken into account, the passwords

1password and password1 would fall under the same mask, one that includes low-

ercase characters and numbers.

Masks can be even more specific, with specifying exactly the number of char-

acters, numbers and/or symbols. For example, the mask ?l?l?l?l?l?l?l?l corre-

sponds to all lowercase combinations of length 8. Masks are also used for password

cracking, as they allow for creating passwords of only specific architectures, which

is useful if there exists some prior knowledge of the encrypted password or a reduc-

tion of the search space is important. This is their main advantage over the brute

force attack, as the creation of masks that mimic user choices can be tested first.

4.5.2 Base Words

As the successful use of masks in password cracking and the various password

policies dictates, passwords are in many cases a combination of different charac-

ter types, alphabet letters, numbers and special symbols. Being able to extract

these popular combinations from leaked lists of passwords plays an important role

in creating better masks and rules for password cracking. But when it comes to

passwords that are made up from dictionary words, it is equally important to also

look at which dictionary words are most popular. For example, password1 which is

one of the most popular passwords on the NordPass list of the most popular pass-

words of 2022 that is mentioned in Chapter 2 would be classified as a stringdigit

mask and while it is important to know that it belongs in the category, it is equally

important to extract what is called the base word, which in this case is password.

Extracting the base word of each password (by essentially removing the non-alpha

characters at the beginning and end of the password), allows for a compilation of

the most popular dictionary words that are used in passwords.
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4.5.3 Fragmentation

As defined in the previous section, a base word removes any non-alpha character

at the beginning and end of the password. Frequently, this is not enough for more

complicated passwords. For example, if a password is made up of more than one

alpha fragments, it is important to consider the type of fragmentation that will yield

the most interesting results when analysing real-world passwords. As was stated at

the Introduction of this Thesis, one of the aims is to identify if and how meaningful

contextual information is in a password and whether it can help optimise password

cracking with dictionary lists.

For example, a password like alexander1998 indicates that a male first name is

chosen along with a year, which could be a birth year. If this type of configuration

is common, it could indicate that people often choose first names and years (maybe

even their own name and date of birth or that of a relative). In the scenario of the

individual suspect, the name and date of birth of the suspect or their family members

could be some of the first passwords an investigator should check to bypass the

authorisation system. On the community scenario, this information is also useful;

common first names and birth years can be concatenated and checked in the hope

that one of the users of the community has this configuration in their password.

Classifying the fragments according to their semantic context is useful to see

not only which topics are more commonly chosen in passwords, but also which of

them commonly go together and generate password candidates according to that

knowledge.

4.5.4 Strength Analysis

One of the most useful characteristics about passwords is their strength. Users are

probably not always concerned in having strong and safe passwords, or simply not
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aware of the consequences of having a weak password. This hypothesis is sup-

ported by the massive use, and re-use, of weak passwords. However, the strength

of the password becomes crucial when it is about protecting critical service, e.g.,

bank accounts or the security of a large infrastructure. To this matter, password

metrics are often put in place to ensure a minimum strength of the password. The

most spread one is the one proposed in 2012, and updated in 2017 [101], by NIST

recommending a minimum of 8 characters including lowercase, uppercase, special

and digit.

However, this approach has shown its limits with time and attackers have

adapted their attacks to mimic the typical patterns followed by humans in general.

A plethora of other metrics have emerged, each of them being based on different

heuristics and methods to assess the strength of passwords. Galbally et al. [253]

and Golla and Dürmuth [254] proposed a comparison of those metrics. While the

method proposed by Galbally et al. [253] is interesting because it provides different

evaluation criteria for each password and therefore better understanding of why a

password is strong or weak, the proposed implementation is not fast enough to anal-

yse more than 500 million passwords in a timely manner. The best password metric

according to Golla and Dürmuth [254] is based on the HIBP API, and therefore it

does not seem at all suitable to us to assess a dataset using an approach based

exactly on such dataset.

The common point in these two articles is that the zxcvbn password strength

metric, originally deployed in the Dropbox service, provide good results. This is the

metric that will be used on for this analysis, and further details about how it works

are presented in Section 5.4.3 of Chapter 5.
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4.5.5 Hardware Consideration

It is essential to include an evaluation on the hardware needed in digital forensic

laboratories to make password cracking viable. As previously mentioned, pass-

words are predominantly stored in a hashed/salted hash format. The hash function

employed is therefore a security parameter in case of a data breach. Indeed, if the

hash function is quick to evaluate, an attacker will have the capacity to evaluate more

candidates than if the function is slow. The MD5 hash function has been widely used

to store passwords and even though it is deprecated, it is still commonly used in on-

line services. A single gaming graphics card, an Nvidia 2080 Ti, is able to evaluate

50× 109 password candidates per second. In order to better visualize these figures,

a single 2080 Ti can fully evaluate all possible MD5 passwords up to length 8 con-

sidering an alphabet of 95 characters (26 lowercase, 26 uppercase, 10 digits, and

33 special characters) in less than 2 days. Considering the BCRYPT hash function,

specifically designed to be slow on graphic cards, only up to five characters can be

brute forced in practical time, as the card can evaluate approximately 25,000 pass-

words per second. Each increment of the length of the targeted password multiply

the time of the attack by a factor of approximately 100.

4.5.6 Steps of the Analysis of the HIBP Dataset

Two cases were possible for the analysis of the HIBP dataset: either analysing

the unique passwords, or analysing the passwords considering the number of oc-

currences in the dataset. The latter option better maps the human behaviour and

therefore the result of the analysis that are presented in Chapter 6 rely on the 3.9

billion non-unique passwords of HIBP_v5.

The steps of the analysis can be summed up as follows:

• The extraction of statistics about the HIBP dataset
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• A pattern and Mask Analysis of the HIBP passwords

• A look at the constituent fragments of HIBP passwords

• The classification of fragments and passwords according to context

• An analysis of the guessability of passwords in HIBP

• A brief contextual analysis of a single dataset (from a single community)

4.6 Contextual Information in Leaked Password Lists

Looking back at RQ1, What impact does a context-based password

cracking approach have on the likelihood of success during a

digital investigation?, it is also important to extract contextual informa-

tion on a bigger level than single passwords in a diverse dataset such as HIBP.

HIBP is composed of various data leaks from widely different sources and as

research has shown, the way users approach password creation differs according

to the purpose of the service. While it is useful to see that, for example, football

team names make popular passwords, it does not mean that they would make

popular passwords in a forum about cars.

Therefore, it is important to try to extract contextual information on a different

level, where the focus is solely on one dataset from a specific data leak, as per the

community scenario. This would answer the following question, does the purpose

of the website/service the password is aimed for, have any impact in the password

itself?

To this end, an experiment is set up where datasets stemming from data

breaches of specific communities will be evaluated with datasets stemming from

similar communities as well as against baseline datasets, to see if there is an in-

crease in found passwords that are thematically close. For example, if in the commu-
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Table 4.1: Contextual datasets in use from leaked password lists

Dataset Size

Comb4

AxeMusic 252,752
JeepForum 239.347
Minecraft 143,248

MangaTraders 618,237

Evaluation
Boostbot 143,578

MangaFox 437,531
RockYou 14,344,391

nity scenario, access to a website about manga is required, would having a leaked

list of passwords from another manga community produce password candidates that

are successful when a more generic list like RockYou might not?

4.6.1 Setup and Datasets Used

The datasets that were used to conduct experiments to gauge the role of context in

password selection for specific forums are highlighted in Table 4.1. All the datasets

used in this experiment are from hashes.org. For the evaluation, two datasets from

two different online communities are used, mangafox and boostbot which are from

communities about manga and video games respectively. Additionally, RockYou is

used as a baseline to compare the other datasets against. There are two publicly

available versions of RockYou. The first consists of 32 million passwords with re-

peated password entries (providing insight to the most frequently used passwords).

The version of RockYou that was used is the one with 14 million unique passwords,

but the full version of 32 million passwords was also tested, but yielded similar re-

sults.
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Comb4

The dataset named Comb4 is a combination of four different leaked datasets from

four categories, music, cars, video games and manga. The aim was to create a

combination of datasets from different sources to cover a wide spectrum of user

interests and ascertain whether the purpose of the forum for which the password is

created for, plays a role during the creation process. The assumption to be tested is

whether a dataset of real-world passwords from a manga community would be able

to crack more (or harder) passwords than a generic dataset as RockYou.

Information about the tools used for this experiment can be found in Chapter 5

and the results of this experiment are described in Section 6.3.

4.7 How Can Password Candidate Dictionary Quality

Be Measured?

Before delving into the creation of bespoke contextual dictionaries, it is important to

well define how to measure the success of these dictionaries. The definition of a

metric to measure and classify the quality of a wordlist given as input to a password

cracking process is a difficult one. The expected features a wordlist should have

and be evaluated on, are likely to vary depending on the final cracking process and

its context. The particular scenario of the attack, such as whether it is a targeted

attack to a specific individual or a fishing attack that targets a group of people, plays

a role in the approach taken for creating a wordlist.

Other factors, such as the language of the target(s), the type of service, etc, also

have to be taken into account, since the approach will be different [255].Therefore,

using a single metric for measuring the quality of dictionaries is not suggested. In-

stead, the focus shifts to a number of factors that can be taken into account, alone

or combined, when deciding the type and makeup of a wordlist that is likely to make
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it the optimal password candidate list for a specific scenario. These factors are

presented below.

4.7.1 Final Percentage of Passwords Cracked

This is the most straight-forward metric in password cracking, where a wordlist is

evaluated based on the amount of passwords it has cracked from a target list. This

metric is typically the most important one – especially in the case where the concern

is the volume of cracked passwords and the focus is not on a single target or a

relatively small number of targets.

Some password cracking processes have a fixed limit of candidates they can

generate based on the size of the input wordlist. For example, a straight dictionary

attack will generate as many candidates as there are in the wordlist, potentially

multiplied by the number of mangling rules, if they are used. Some other processes

can be considered as endless, such as for example Markov-based ones if they are

not limited, and will continuously produce candidates like an unbounded exhaustive

search would do. As a consequence, those endless processes would theoretically

always retrieve 100% of the passwords if they are given enough time, which in most

cases is not practical. That is why it is necessary to set a limit to the number of

candidates that a process is allowed to generate and test. Such limit can be adjusted

depending on the complexity of the scenario for assessment.

4.7.2 Number of Guesses until Target

The previous metric alone is not enough to evaluate a wordlist, as other factors can

be relevant in some scenarios. For example, one wordlist may recover 75% of pass-

words, while a second may get only 60%. But, it might be the case that the second

one reached a score of 50% with fewer candidates generated than the first one.

In some scenarios, the number of candidates that can be evaluated in a reason-
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able time is strongly limited because of hardware constraints or high complexity of

the underlying function, making the second wordlist more interesting for a particular

scenario. Assessing the number of guesses needed to reach a targeted percentage

of retrieved passwords can help to select a wordlist more suited to the conditions of

some scenarios.

4.7.3 Progress over Time

Another metric that is strongly related to the amount of found passwords, is the

pace in which the passwords are retrieved. During password cracking, an updated

percentage of results at pre-established checkpoints, can give us insights into the

performance of the dictionary over time. For example, at some point in the cracking

progress, the amount of new passwords guessed at every checkpoint might start

decreasing, which means that the new password candidates that are checked no

longer recover new passwords. This is often another criterion to stop the process

and also a hint, for dictionary lists that are ordered by count, that the size of the

input wordlist can be decreased without a remarkable effect on performance. This

criterion is the second derivative of the curve of found passwords over number of

guesses and represents a process with an upper bound, compared to the metric

outlined in Section 4.7.1.

4.7.4 Size of Wordlist

Closely related to the stop criterion of incremental progress over time, the size of the

wordlist is another metric that can be taken into account. For example, when two

wordlists, with a significant difference in size, produce similar numbers of cracked

passwords, the smaller wordlist can be thought of as of better quality, as it needs

less information to achieve the same results. From another point of view, when the

foreseen process is ML-based, a larger wordlist could be preferred to reinforce the
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training phase.

4.7.5 Better Performance with Stronger Passwords

Another metric that should be considered is the performance of a wordlist against

difficult passwords. For example, if two wordlists are similar in the previous criteria,

i.e., crack about the same number of passwords, do it at about the same amount of

time and are of similar size, the one that cracks more difficult to recover passwords is

stronger, and should be assigned a higher score. Often, in real world scenarios and

if the hash function permits it, an exhaustive search is performed first for the weaker

passwords. This means that a wordlist that performs well against passwords that

cannot be recovered by a brute force attack, is more valuable.

4.7.6 Compound Metric

The above metrics, cannot accurately assess any individual wordlist. Focus on one,

or more of the above is necessary, according to the target case. For example, when

the goal is to recover as many passwords as possible, the percentage of success

is what matters most. But, when the largest number of passwords in a specified

amount of time is wanted, the trade-off between success and time is important.

When the focus is on a single target, or a few targets, like during the course of an

investigation, speed and possibly the performance against stronger passwords are

important factors to consider. This criterion can be refined to look at the number of

guesses needed to retrieve a given percentage of passwords of a certain strength

class.

Furthermore, it has been shown that large corpora of passwords obey Zipf’s

Law, meaning that the frequency of each popular password, would be inversely

proportional to each rank, i.e., the second most popular password would appear

approximately half as many times as the first [256]. According to this analysis, the
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level of fit of a particular dataset under this model, could be an indicator of strength

of the dataset.

This brings forward the need for a compound metric, one that combines two or

more of the above criteria, to get an evaluation tailored to a specific case.

4.8 Dictionary Evaluation Methodology

Based on the metrics analysed in Section 4.7, the evaluation of input wordlists, with

the purpose of arriving at the optimal one, is a case by case scenario and is based

on the individual needs, be it rate of success, time it takes to achieve a certain

threshold or success at recovering one specific strong password.

The evaluation of the quality of password cracking dictionaries based on the

above metrics can be done with the Password Cracking Wordlist Quality (PCWQ)

Framework as shown in Figure 4.5. As the methodology flowchart shows, the per-

formance of the different input dictionaries is evaluated and presented or fed back to

pre-processing. The pre-processing step, which will be discussed in greater detail

in the following sections, contains the creation of tailored input lists from existing or

custom dictionaries and the tailoring of mangling rules to the specific scenario (while

keeping in mind whether the end goal is success ratio, time efficiency, recovery of

a targeted password, etc). The feedback from the evaluation process will re-trigger

the wordlist creation process in order to modify the size of the list, the number and

quality of mangling rules and the level of contextual information, with the end goal

being to optimise the generation of a password candidate list.

The goal of this framework will be the evaluation of all created password can-

didate lists under the same scenarios and, by taking into account the metrics dis-

cussed in Section 4.7, to arrive at the optimal wordlist for each scenario.
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Figure 4.5: Methodology for the evaluation of bespoke, contextual dictionaries
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4.9 Dictionary Creation Methodology

As mentioned throughout this thesis, dictionary attacks are an effective way to crack

passwords. There are many publicly available dictionary lists that are used for the

purpose of password cracking, many of which originating from leaked password lists

from data breaches.

To this end, it seems logical that the best way to increase the chances of crack-

ing a password (or cracking as many passwords as possible) from a list of hashed

passwords is to create a more robust dictionary list. The dictionary generation ap-

proach proposed as part of this work leverages the fact that: 1) users tend to choose

passwords based on real words, 2) users choose passwords that are meaningful to

them, and/or 3) users often use personal information including names, birthdates,

places, and interests, e.g., sports, cars, popular cultural references, etc.

This selection of features is based on the statistical analysis of over 3.9 billion

real-world passwords as described in Section 4.4 in which case the passwords of the

HIBP dataset are deconstructed into their constituent components and classified ac-

cording to context. This analysis demonstrated that the aforementioned categories

are some of the most popular chosen in the real world.

A reasonable hypothesis is that if a user is tasked with defining a password for

a website of a specific topic, the probability that this password might be thematically

close to that topic is higher, e.g., more likely to choose a car related password for a

car forum. Therefore, a dictionary generation strategy based on thematic categories

can prove useful. Ideally, the building of a diverse portfolio of dictionaries for various

topics can be used alone or in combination according to a specific target.

Ideally, the evaluation of the proposed methodology would include testing the

contextual dictionaries against specific targets during the course of an investigation.

For example, if a digital investigator wanted to access the encrypted device of a sus-

pect who was known to be a fan of rock music, football and tennis, a dictionary could

93



4.9. DICTIONARY CREATION METHODOLOGY

Figure 4.6: A depiction of the tree-like structure of Wikipedia

be created using these topics as seed words. Unfortunately, for data protection and

ethical purposes, access to this privileged information is not possible. Therefore,

the approach for evaluation is focused on communities’ passwords as opposed to

that of individuals.

The approach outlined as part of this thesis for creating dictionaries starts with

Wikipedia [257]. The reasoning behind this is that each page on Wikipedia provides

links to other Wikipedia entries that are thematically close – from a semantic, cul-

tural and common association standpoint. This thematic linking of content can be

pictured as a tree-like structure stemming from the root word, or seed phrase. This

tree-like structure enables the selection of a starting point and the definition of the

depth and breadth of the exploration.

An example of the Wikipedia-driven topic hierarchy is shown in Figure 4.6. As-

suming that the seed topic is “Manga”, each of the links referenced in Manga’s

Wikipedia entry leads to further related Wikipedia pages, from different types of

manga to famous Japanese actors, writers, and illustrators, to manga-related TV

networks, etc. Proceeding down one level, i.e., visiting each of these Wikipedia en-

tries, leads to further new related pages, and so on. For the purpose of collecting

this information from Wikipedia, DBPedia was used, which is a database version of

Wikipedia.
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4.9.1 DBPedia

DBPedia [258] is a crowdsourced project aiming to offer a structured manner to ac-

cess the information found on Wikipedia. The DBPedia information contains the

abstract of each article found on each Wikipedia page, as well as the information

contained in the article’s infobox. The infobox contains a summary of the most rel-

evant information related to each article. As infoboxes on Wikipedia do not consis-

tently follow a single structure, that information is collected with mappings. Mappings

assign each entity in the infobox a DBpedia ontology type so that each attribute in

the infobox is mapped to the DBpedia ontology [259]. This provides an easy way

to leverage the structure and links between Wikipedia pages, providing an intercon-

necting web of content that is thematically related. The extraction of the needed

information from DBPedia is outlined in further detail in Chapter 5.

A comprehensive diagram of the proposed process is shown in Figure 4.7. The

next sections outline each of the parameters used as part of the experimentation

and describes how/why they were chosen.
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Figure 4.7: Methodology for the creation of bespoke, contextual dictionaries
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4.9.2 Selection of Evaluation and Control Datasets

As a baseline to compare this approach against existing ones, the dictionary Ignis-

10M (as described in Section 4.3.4) has been selected. The reason Ignis has been

selected instead of RockYou is that although the passwords of RockYou have been

leaked as plaintext and therefore represent a more accurate account of real-life

passwords, RockYou was leaked in 2009. Password policies have evolved signif-

icantly since then, i.e., password policies have become stricter regarding their re-

quirements – with a larger minimum length and a mix of upper and lowercase char-

acters, numbers, and symbols often all being required. Furthermore, according to

the creator of Ignis, when looking at the Top 1000 passwords in Ignis-10M and Rock-

You, 411 passwords of Ignis were not in RockYou’s Top 1000. This is likely due to

RockYou only containing passwords created up to 2009. For example, “Minecraft”,

which is a Top 1000 password, does not exist in RockYou due to the game being

released in 2011. Using Ignis-10M as the dataset to compare this approach against

provides the most up-to-date baseline.

4.9.3 Dataset Selection

In order to prove the importance of contextual information in password cracking us-

ing a community of users around a specific interest/topic, ten datasets were chosen

from hashes.org from different online community leaks. As can be seen from Ta-

ble 4.2, the datasets have been picked to represent a variable sample of topics and

interests. These include data breaches from forums focused on music, cars, video

games, recipes, and shopping. The datasets are also of various length; the smallest

being approximately 25,000 and the largest being 23 million – to encompass as big

a variance as possible.

These dictionary lists are then used as input with the password cracking tool
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Table 4.2: The ten datasets involved in the experiments in password cracking

Dataset Size

AxeMusic 252,752
JeepForum 239.347
Minecraft 143,248
MangaTraders 618,237
Wattpad 23,531,304
Battlefield 419,940
Wanelo 2,130,060
EverydayRecipes 25,271
Zynga 42,908,386
DoSportsEasy 46,113

of choice in order to crack the passwords of the data sets listed in Table 4.2. The

password candidate creator tool that was chosen for this set of experiments was

PRINCE, as it had the best performance in the experiments with leaked password

lists that were described in the previous section.

4.9.4 Parameter Optimisation

For the purpose of this experiment, ten seed words were chosen in order to corre-

spond thematically to each leaked dataset that is shown in Table 4.2. These seed

words can be found in Table 4.3. It should be noted here that the seed word for

Battlefield is Battlefield_(video_game_series) in order to represent the video game

Wikipedia article, but will be referred to as simply “Battlefield” for the remainder of

this work. The seeds words were chosen to be as thematically close to the topic as

possible. For example, for the Zynga leak, the world “Zynga” was also chosen as the

starting point for creating the dictionary. For Wanelo, a leak from a website about

shopping, the word “shopping” was used. As observed in the table, half of the seed

words were chosen to be the same word as the target dataset, such as “Minecraft”
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Table 4.3: The ten dictionaries produced by DBPedia

Dataset Seed Word Size

AxeMusic Music 1,001,173
JeepForum Car 853,825
Minecraft Minecraft 243,803
MangaTraders Manga 180,641
Wattpad Fanfiction 641,007
Battlefield Battlefield 415,311
Wanelo Shopping 627,487
EverydayRecipes Cooking 524,269
Zynga Zynga 443,443
DoSportsEasy Sports 31,918

and “Battlefield”, while the other five were chosen to be a generic one-word descrip-

tion/category of the purpose of the website, such as “Cooking” for EverydayRecipes

and “Sports” for DoSportsEasy. The rationale behind this was to study whether an

identical seed word to the target leak over a generalised topic would be significant.

Generated Dictionary Level Depth

The seed words mentioned above were subsequently used with the methodology

outlined in Figure 4.7 in order to create custom dictionary lists. One parameter that

needs to be defined at this stage, is the depth of these datasets, i.e., how many

layers down from the seed word should be explored during dictionary creation. For

this purpose, multiple dictionary lists for each seed word were generated; ranging

from one layer to three layers, and in some cases four layers. Of course, the time

to generate these dictionaries depends on the number of links in each level. The

latency of the Internet connection has a significant impact on the speed to gather

the pages from the online version of DBPedia. As indicative durations, Layer 1 is

almost instantaneous, Layer 2 took ∼20s, Layer 3 took ∼30m, and Layer 4 took
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approximately ∼1 day.

The performance of these varying layer depths was assessed for a selection of

the aforementioned datasets, and it was found that the dictionary lists produced by

only 1 or 2 layers achieved lacklustre performance. For example, in the experiment

using the Wattpad leak, the custom 2 layer dictionary cracked 1.6% of the total

passwords, while the 3 layer dictionary managed to crack 42.1%.

A 4 layer dictionary was produced with the “Manga” seed word. This was used

with the leak from Mangatraders, and it was still found that the 3 layer dictionary

performed better than the 4 layer one. More specifically, the 3 layer dictionary found

57.2% of the passwords, while the 4 layer one found 34.4%. This is due to smaller

dictionaries facilitating more mangling for a fixed number of guesses than a larger

one. Therefore, selecting a depth of 3 layers is the optimal choice. When keeping

the number of guesses constant across the experimentation, it is important for the

list to be long and detailed enough, but not too long as to include words that are too

thematically distant from the seed word.

Finally, as can be seen in Table 4.3, even though each of these datasets are

of depth 3, their size varies according to how many links are contained in each

Wikipedia/DBPedia page visited.

Password Mangling Rules

As mentioned in Section 3, password mangling rules are set during password crack-

ing processes in order to imitate real users’ password habits. For example, adding

numbers or symbols at the end of a chosen password when the corresponding pass-

word policy requires them. These are generally useful and should be tailored ac-

cording to the target. For the experiments outlined as part of this work, the default

mangling rules of John the Ripper were used on both the contextual dictionaries and

the baseline dictionary.
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Number of Guessing Attempts

When it comes to password cracking, the time taken to explore the password search

space defined is directly related to the number of attempts permitted during the

cracking phase’s execution. Despite the brute-force cracking mantra of every pass-

word being crackable given enough time, this is realistically impractical in real-world

scenarios. With a reduced search space and using a non-brute-force technique,

more attempts will crack more passwords and/or have a higher likelihood of crack-

ing a specific password – but at the expense of time and resources. As a result,

password cracking typically requires a reasonable limit for the number of attempts

to be decided upon.

In order to decide on the number of attempts to limit each experiment presented

as part of this work, a number of options were evaluated. To overcome the difference

in dictionary sizes generated for a specific topic and/or generated dictionary level,

a fixed size of guessing attempts was selected after experimentation and this was

10 billion. A lower number of guessing attempts produced worse results for both

the baseline dictionary and the contextual dictionaries. On the other hand, more

guessing attempts did result in more cracked passwords, but the trade-off between

the additionally found passwords and the running time of the cracking process was

deemed inefficient for the purposes of this work.

4.10 Methodology for Ranking and Optimising Con-

textual Dictionaries

For taking dictionary generation to the next level with the aim of getting an even

better success ratio, a next step can be the ranking and optimisation of bespoke

dictionaries for specific topics.

For this purpose, four data leaks out of the ten of the previous experiment, have
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Table 4.4: Size of selected datasets from four communities

Dataset Size

AxeMusic 252,752
JeepForum 239.347

Wattpad 23,531,304
MangaTraders 618,237

been selected from four communities, about music, cars, fanfiction and manga.

These datasets and their sizes can be found in Table 4.4 and as previously, only

contain the passwords from the leaks without any other identifiable information, i.e.,

the datasets used do no contain usernames, e-mail addresses, phone numbers, etc.

4.10.1 Size of the Created Dictionary

It has been observed that the size of the wordlist in a dictionary attack plays an im-

portant role in the percentage of found passwords [136]. In fact, the larger the dic-

tionary list, given an infinite amount of time and permutations, the more passwords

will be cracked. This is why given infinite time, a brute force attack is guaranteed to

work. In the previous experiment with 10 datasets, all 10 were chosen to be Layer

3 and as the results in Chapter 6 showed, when there was a large discrepancy in

size, the much smaller dictionaries underperformed. For this reason, in this new

experiment, the depth of traversal in DBPedia for all four seed words was chosen

to be either Layer 3 or 4. More specifically, Music, Car and Fanfiction, being larger

Wikipedia articles with more links, were chosen to be Layer 3, while Manga was cho-

sen to be Layer 4. The reason for this was that Layer 3 for Manga contained only

1̃80,000 candidates and considerably under-performed compared to the equivalent

of Layer 4. The sizes of the produced dictionaries can be found in Table 4.5.
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Table 4.5: The DBPedia dictionaries

Seed Word Size Corresponding Dataset

Music 1,001,173 AxeMusic
Car 853,825 JeepForum

Fanfiction 641,007 Wattpad
Manga 6,348,947 MangaTraders

4.10.2 Thematical Distance

Another important aspect of the creation of bespoke wordlists on certain topics, was

making sure that the words were indeed thematically close to the seed word. In

order to ensure this, the natural language model Wikipedia2Vec was used [260].

More information about this model is given in Section 5.8.1 of Chapter 5.

Using Wikipedia2Vec, the similarity of each word of the bespoke wordlists can

be evaluated. This evaluation returns a similarity score according to how close the

embeddings are in vector space, i.e., a score of 1 would mean they are identical.

With this similarity score in hand, the words in the wordlist are ranked accordingly

with the seed word, from the highest similarity score to the lowest. This means

that not only will the words that are higher on the list be checked first, but also

more permutations of them with mangling rules will be checked during the attack.

At this stage, a threshold can be set for the similarity score, e.g., words below a

certain threshold could be considered as irrelevant to the seed word and therefore

disregarded.

The specifics of the calculation of the proximity score as well as the implemen-

tation of the ranking are discussed in Section 5.8 of Chapter 5 and the results of the

experiments can be found in 6.6 of Chapter 6.
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4.11 Design Benefits, Limitations and Trade-offs

As can be seen in Figure 4.7, the starting point for the proposed contextual dictio-

nary approach is a single Wikipedia article stemming from the available contextual

information about a target individual or community. As mentioned at the beginning of

this chapter, where the possible scenarios in which a contextual approach in pass-

word cracking might make sense, every case is different, therefore the sequence of

steps cannot be predetermined.

As mentioned in Chapter 3, dictionary attacks are one of the most popular types

of password cracking techniques used. A dictionary attack with a list stemming from

a password leak is a good bet and in many cases the go-to approach, because real

world passwords are being evaluated (with mangling rules) and it is still relatively fast

(of course that depends on the size of the list and the number of mangling rules).

It can be argued either way whether a regular dictionary attack could take prece-

dent over a context-based dictionary attack, depending on the specific case and the

number of passwords to be retrieved. A good approach, for the offline scenario,

would be to target easy-to-guess passwords first with a regular dictionary approach

and then follow with a more intelligent attack for more difficult passwords later. For

the online scenario, or that of a targeted individual, if the investigator is in posses-

sion of previous passwords, variations thereof should be tested first. These can also

offer insights into the suspect user’s personal mangling rule selection. In any case,

the specific parameters of the case will dictate the choice.

Another advantage of this approach is that these contextual dictionaries do not

need to be produced again and again for every case. In fact, the investigator can

have on hand dictionaries about frequently encountered topics and therefore skip

the dictionary creation step, which could again save crucial time during a triage

situation.

A significant consideration when choosing the proposed approach is the length
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of the generated dictionary. A smaller dictionary will allow for a larger number of

combinations of mangling rules to be attempted over a fixed time period (or fixed

number of guesses). Smaller dictionaries will result in more mangled attempts being

made based on more relevant password candidates, e.g., passwords in Layer 1

(which are direct links to the seed word) will be contextually closer to the seed word.

Of course, with ranking based on contextual proximity and setting thresholds for

thematic distance, a very well tailored and targeted dictionary list can be created. As

a result, given a fixed time (or fixed number of attempts), there is a trade-off to con-

sider between checking more, i.e., more distant, password candidates and checking

fewer, i.e., more related, candidates with more mangling rules. This is an espe-

cially important choice since with more layers added, the length of the dictionary list

increases correspondingly.

Furthermore, the time it takes to add one more layer to the dictionary list, the

distance from the seed word, increases exponentially. Unless there is a bank of

common pre-computed seed words to be availed of, a smaller dictionary list might

make more sense in some cases.

The last consideration for the proposed approach is the information that is in-

cluded in it. As the traversal from the seed word to subsequent layers is taking

place, the decision was made to only include links found in each DBPedia article.

The reason for this is once again based on the trade-off.

In the initial design of this approach, adding the sanitized text of the abstract

and/or article was considered. The approach consisted of an extraction of keywords

from this text and the incorporation of them into the list along with the links. Ulti-

mately, the inclusion of words from the abstract/article itself was decided against, as

this did not offer any significant increase in value. It is also reasonable to assume

that the links contained in each Wikipedia article are also the most important related

topics to the original seed word. While, there is the possibility that some good pass-
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word candidates are missed as a result of this decision, this trade-off is deemed

acceptable to result in more relevant password candidates.

Finally, a key difference of the contextual, generated dictionaries to the traditional

leaked lists of passwords from data breaches is that they are not human generated.

A leaked list will have an advantage over any generated dictionary in so far that it in-

cludes inherently the human factor in the passwords. The techniques humans resort

to when they create a password can be found and leveraged with a use of a leaked

list, especially because the number of leaked password lists from data breaches is

big enough to offer valuable insights into the most popular techniques chosen, as

the results of the analysis of the 3.9 billion passwords will show. This is something

that a generated list of passwords, contextual or not, cannot compete against. To

some extent, mangling rules can rectify this, but the information contained in real-

world password lists will still be one of the most valuable assets in every password

cracking attempt.
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Chapter 5

Implementation

5.1 Introduction

In password cracking, whether done for in the context of a lawful investigation or by

an adversary looking to illegally gain access into a system, there are some tools and

methods that are universally acknowledged and used across the board. They offer

capabilities to parallelise password cracking, the ability to introduce custom man-

gling rules, and also to tailor the attack’s parameters to one’s needs. This chapter

discusses the implementation of the setup of the experiments that are described

in Chapter 4 and the use of the tools that have been used throughout this thesis

for analysis and evaluation. Section 5.2 describes the process for retrieving and

cleaning the HIBP dataset, while Section 5.3 presents the tools that were used for

the analysis of said dataset, some of which like the zxcvbn strength meter are used

for ensuing experiments as well. Section 5.5 introduces the Password Cracking

Wordlist Quality (PCWQ) framework and discusses its procedural flow and tools

that were used in it. Section 5.7 looks at the building blocks of contextual dictionar-

ies and finally Section 5.8 looks at the setup used for the ranking and optimisation

experiments of the contextual dictionaries.
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5.2 Preparing the HIBP Dataset for Analysis

As mentioned in Chapter 4, the Have I Been Pwned dataset is analysed for extract-

ing information about the makeup of users’ passwords. This section specifies the

steps that were taken to retrieve the plaintext and clean the dataset. In a nutshell,

the plaintext passwords were gathered from Hashes.org and the CynosurePrime

team. An identification and removal of non-human chosen passwords took place. A

more detailed explanation follows.

5.2.1 Retrieving the Plaintext

In order to conduct a statistical analysis of the passwords from the HIBP_v5 dataset,

the passwords are first required to be in clear text form. The Hashes.org web-

site [261] contains lists of clear text values for many password datasets – including

the five versions of the HIBP dataset. The recovery ratio from the HIBP_v5 hash

list is above 99.2%. In 2017, the CynosurePrime team, a password research col-

lective, managed to recover almost all passwords from the first version of the HIBP

list [262], claiming a final recovery ratio of 99.9999%. One of the purposes of their

work being research, their list of recovered clear text passwords was shared to the

researchers in this work. CynosurePrime initially focused on HIBP_v1, and there-

fore their list contains passwords from this list removed from later versions. Those

passwords were removed essentially because they were somehow corrupted, e.g.,

badly encoded, duplicates, or not generated by humans. For this analysis, the

CynosurePrime list was merged with the one collected from hashes.org to enrich

the dataset with passwords from the later versions of HIBP. While this list contains

more than 99% of the passwords of HIBP_v5, it should be mentioned that the small

percentage of passwords that has not been included has not been recovered by

either the CynosurePrime team, or the Hashes.org team. These passwords can be
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assumed to be some of the strongest in HIBP, which is something to be taken into

account.

5.2.2 Cleaning the Dataset

One of the first steps in the clean-up process of the dataset was to remove all the

passwords encoded in hexadecimal format, corresponding to approximately 35 mil-

lion passwords. While being valid passwords, the tool used for the basic analysis

would not handle them properly. Further, a majority of these hex encoded pass-

words consisted of inputs which were wrongly encoded or handled on the HIBP

dataset creation.

During the analysis, one unusual pattern was identified with a significantly high

frequency. The “word” fbobh was discovered in the top 10 of used words. This is not

a common word found when searching regular sources nor is it a common pattern,

e.g., a keyboard walk - letters that are next to each other on a keyboard. Overall, it

was identified that approximately 3.6 million unique passwords from HIBP_v5 have

the structure “fbobh_XXXX”, where “XXXX” represents four random characters in-

cluding lowercase, numbers and specials, but not uppercase. These passwords can

be attributed to the MySpace data breach and are not human generated. Therefore,

these passwords were removed from the analysis.

The clear text list used for the remainder of this work is therefore composed

of 515,680,539 unique passwords. Considering the count value from the HIBP_v5

for each password’s occurrence in data breaches, this dataset represents a total of

3,951,907,330 passwords.
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5.3 Tools Used for the Statistical Analysis of HIBP

In order to execute the analysis of the passwords of HIBP, several tools have been

employed. An overview of their capabilities and use throughout this work is pre-

sented below.

5.3.1 Password Analysis and Cracking Kit

The objective of this analysis is to present global characteristics about the pass-

words, including the type of alphabet used and the most frequent patterns. The

PACK [145] was used to analyse the HIBP_v5 dataset. PACK provides several anal-

ysis tools, but the included statsgen script provides the functionality needed to

perform this analysis. More specifically, it includes information on password length,

character sets used and simple and advanced masks. The rulegen script could

have provided interesting results as well, but it unfortunately also requires an ex-

tensive use of memory and was not able to process the dataset. Another script of

general interest (which does not apply for this analysis) is PolicyGen, which takes

into account the password policy in place and produces rules and masks that ad-

here to this policy [263]. This script would be useful to reduce the search space for

password cracking.

PACK analyses the composition of passwords and classifies them according to

the type of character set used. For example, a password is associated with the

category loweralphaspecialnum when it contains lowercase, special characters and

numbers, e.g., pa$$w0rd, no matter what the order or frequency of appearance of

the component characters are. A description of each of the categories used by

PACK is shown in Table 5.1. Using this classification, PACK outputs the count of

passwords in each category.

The analysis can be further refined as it focuses on character sets without con-
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Table 5.1: Types of patterns used by PACK

Pattern Meaning Example(s)

loweralpha Lowercase only password
upperalpha Uppercase only PASSWORD
mixedalpha Lower and uppercase only paSSwoRD

numeric Numbers only 123456
loweralphanum Lowercase and numbers password12, pass12word
upperalphanum Uppercase and numbers PASSWORD12, PASS12WORD
mixedalphanum Lower and uppercase and numbers pasSWord12, PASS12word

special Special characters only %.&;#
loweralphaspecial Lowercase and special characters password!, pa$$word
upperalphaspecial Uppercase and special characters PASSWORD!, PA$$WORD

specialnum Special characters and numbers only 123456!, 123!456
mixedalphaspecial Lower and uppercase and special characters Password!, !Pa$$word

loweralphaspecialnum Lowercase, special characters and numbers password1!, !pa$$1word
upperalphaspecialnum Uppercase, special characters and numbers PASSWORD1!, PA$$1WORD!

all Lower and uppercase, special characters and numbers passWORD1!, !pA$$1woRd

sidering the internal password structure. For example, the category loweralphanum

contains passwords like 12password, password12, and pass12word. A more re-

fined classification, where the internal order is considered, would separate these

into three different categories. This further classification is important because the

approach to guess these passwords will be different. Following the vocabulary used

in password guessing techniques, these internal password structures are called

“masks”. Therefore, for the aforementioned examples, the corresponding masks

would be digitstring, stringdigit and stringdigitstring, respectively.

5.3.2 pipal

As part of the analysis, another password analysis tool called pipal‘[264] was used.

Pipal offers many functionalities, some of which exist in PACK as well, and these

include information about character sets used and the internal architecture of the

password. Pipal also offers the functionality of searching how many times a specific

word is found in a password such as looking up the frequency of specific months
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or years in passwords, allowing for the extraction of very specific contextual details

from leaked lists of real-world passwords. For the purpose of this research, pipal

was used to extract the top 100 passwords, as well as the top 100 base words.

As stated in Chapter 4, a base word is defined as a password where non-alpha

characters from the beginning and end have been removed.

5.4 Fragmentation

PACK can provide a basic overview of the dataset’s composition. For a more in

depth analysis, the Óðinn Framework [265] is used, which has been adapted and

enriched particularly for this advanced analysis.

5.4.1 Fragmentation with the Óðinn Framework

Óðinn is a tool that can split passwords into their basic fragments and find their

semantic meaning. It can also create password candidates out of multiple frag-

ments and recover longer and more complex passwords, that other state-of-the-art

password guessers failed to recover. It has a modular architecture, facilitating the

addition and adaptation of its analysis functionality. This facilitates pipelined work-

flows that consist of multiple modules and enables the execution of multiple steps

first, before the final analysis is performed, e.g., split passwords into fragments →

classify fragments → aggregate the classes. The two main components used in this

work are for fragmentation and classification.

The goal of fragmentation in Óðinn is to split a password into meaningful frag-

ments, such as its component words, e.g., ilovemom should be split into three frag-

ments. This fragmentation is achieved in two steps. Firstly, the passwords are de-

composed according to the three basic character sets, namely letters, numbers and

specials. Subsequently, the letter fragments are split into further fragments when
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appropriate to do so. This second step is performed using SymSpellPy [266], a

Python implementation of SymSpell [267], which is one of the most efficient spelling

correction algorithms [268].

As a ground truth for splitting text into single words, SymSpell needs a dataset

of words with their corresponding frequency counts. This dataset has to be seen

as a vocabulary list and not as a set of password candidates. The SymSpellPy li-

brary comes with a small English dictionary with counts as default. Such approach

is very efficient for tasks such as autocorrection modules or other natural language

processing tasks. However, passwords are likely to contain foreign expressions, pur-

posely mistyped words, popular culture references/characters, celebrities, or slang

words which are missing from standard language datasets and therefore using clas-

sical dictionaries would fail to properly fragment passwords.

An ideal solution relies on the existence of a dataset composed of fragments

properly extracted from real passwords, which, from reference, does not exist. A

new dataset is therefore produced by extracting words from 3,937,684,877 Reddit

comments [269]. This source was chosen for two reasons: 1) the comments contain

slang words and common expressions used on the internet, and 2) these comments

are written in several languages, resulting in a multilingual dictionary.

5.4.2 Fragment Classification

As there can be many different types of fragments composing real-world passwords,

Óðinn provides different ways of classifying them:

• WordNet – To classify normal English words, WordNet [270] provides a synset,

i.e., a set of synonyms relating to a single given word. As WordNet is built

hierarchically, the tree can be climbed to get synsets with a broader meaning

for the classified word.
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• Functions – Functions check if a given input matches the patterns defined

within them, e.g., years or dates.

• Dictionaries – Óðinn contains a collection of dictionaries, each of them listing

words of a specific class, e.g., cities. These lists are mostly hand-crafted and

refined.

Tests with Óðinn have shown that in most cases, WordNet is classifying words

correctly. However, it quickly reaches its limit. For example, simple typos or

slang words are not correctly classified by WordNet, which is only looking for ex-

act matches. This is an issue with passwords, as it is common to use slang words

and phrases, e.g., iluvmymom.

To compensate for this insufficient classification, enriching the dataset of words

used with the non-classified fragments was a focus of this work. GloVe [271] was

used to automate this process with its Common Crawl 42B 300d, a pre-trained

model in English for GloVe [272]. The process used can be summarized as follows.

A proximity score between each non-classified fragment and the previously defined

categories is computed. This proximity score is the Euclidean distance between the

embeddings of those words in GloVe. The fragment is then added to the categories

for which the distance is smaller than a given threshold. This process was repeated

as some fragments could remain unclassified after one pass but be classified in the

second pass thanks to the previous extension of the dataset of words. Many frag-

ments were still not classified using this process; mainly random strings, typos and

slang. This is because they do not have a representation in the Common Crawl and

therefore cannot be compared to the categories.

Once the classification is achieved, Óðinn produces the frequency counts for

all the observed combination of classes, e.g., the number of times passwords are

composed of a name followed by a year. As one of the motivations of this work

was to analyse in more detail those classes and their combinations, Óðinn was
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configured to save the classification of each password in addition to the aggregated

data. Letter fragments that were classified by Óðinn as single and double letters

without meaning are removed, e.g., “xf” is removed but “it” remains).

5.4.3 zxcvbn - Password Strength Meter

Classifying the passwords according to how easily they are cracked is one of the

most important metrics when it comes to providing insight into password selection

by humans and inform password policies and individuals on the best practices when

it comes to password creation. There are many strength meters in use, in fact most

services implement their own strength meters, and as was seen in Figure 2.3 of

Section 2.4.1 these metrics can give widely different results. The metric zxcvbn [225]

which is open source and also used by Dropbox as their password strength meter

is the one used to assess the strength of the 500 million unique passwords in HIBP

as well as in all experiments involving the measure of strength of found passwords

throughout this thesis. This metric attributes an integer score between 0 and 4 to

each password according to strength, with passwords in class 0 being the weakest

and those in class 4 the strongest.

5.5 Password Cracking Wordlist Quality Framework

In order to assess dictionary quality, a methodology must be developed, that takes

into account the metrics of quality that were discussed in Section 4.7.

This methodology starts with one or more input dictionaries that could stem from

leaked lists of passwords or be generated, like the contextual dictionaries that have

already been discussed in Chapter 4. These can be combined, categorised and

their size can be reduced based on whether they have been ranked for popular-

ity (in the case of leaked password lists, reducing the size would mean eliminating
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passwords that don’t feature repeatedly). At this stage, and especially for generated

dictionaries that do not stem from leaked lists that contain human’s behaviour inher-

ently in them, mangling rules will be employed to create variations of the password

candidates to imitate human behaviour.

The final dictionary would be fed into one or more password cracking tools, and

the parameters of the experiment would be defined at this stage. E.g. if time is the

metric of importance, the password cracking attacks would have a predefined time

limit or number of attempted guesses. The results of this process will be evaluated

based on the metrics presented in Section 4.7 and depending on the results the

process could be restarted from the second step with tweaked parameters, e.g. a

smaller or larger dictionary, more, less or different mangling rules, etc.

5.6 Password Cracking Tools

The main password cracking tools and algorithms that have been used throughout

this work are presented in this paragraph. More information on them can be found

in Section 3, but they are also briefly presented in the following section. The reason

that more than one password cracking tools have been selected for the evaluation

stage of PCWQ is that the differences in the way they work, could affect the results

greatly, therefore having a more well-rounded view is helpful. More than that, some

password tools need the information that is found within leaked passwords to create

password candidates, like tools based on neural networks. Dictionaries that are

generated from English words that do not contain this information would have an

inherent disadvantage with these tools.

The success of the input wordlist is not only based on the above factors, but also

on the tools used to do the password cracking. For example, PCFG works better and

estimates more accurate probabilities when the input dictionary does not contain
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only unique entries, but repeated ones. However, such datasets with repetitions are

rarely available to the research community. Therefore, in order to test wordlists, it is

essential to have a few different tools to evaluate them with.

For this purpose, the four tools mentioned in the list below were chosen.

• John the Ripper (JtR) is one of the most well known open source password

cracking tools. It supports various OS and can crack many different types of

hashes. It supports various attack modes, including brute force and dictionary

attacks.

• Ordered Markov Enumerator (OMEN) [152] is a password cracking tool us-

ing a Markov model and produces password candidates in order of decreasing

probability.

• PRobability INfinite Chained Elements (PRINCE) [153] is a password candi-

date generator that uses one dictionary list to produce combinations of words

as password candidates. Depending on the length specified, different com-

binations of words from the dictionary list are concatenated to create new

password candidates.

• Probabilistic Context-Free Grammar (PCFG) [273] utilises Machine Learn-

ing to train on leaked password lists and generate models that mimic password

creation habits of users. PCFG is one of the state-of-the-art password crack-

ing algorithms, but one of the key factors to its use that is of importance in

the approach of this thesis is that it offers its best results when it is trained on

leaked lists of passwords rather than generated ones, so it can leverage the

information of password tendencies inside the real-world leaked passwords.

The aim of using these four tools is not to compare them and find which is the

better one, rather to make sure the input dictionaries are compared as thoroughly
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as possible. In order to perform this part of the process, the Password Guessing

Framework (PGF)[274] is used. This tool is an open source tool to automate the

process of comparing different password guessers.

The reason for using PGF is to avail of its ability to automatise the setting up

of the cracking process. Indeed, PGF allows the setting up of ’jobs’ which will be

processed sequentially, where the parameters of the guessing tool can be defined,

such as the input dictionary, target list (hashed or plain), the maximum number of

guesses, etc. The results come in the form of *.txt and *.csv files containing

an analysis of the number of found passwords, a list of those as well as data on

cracking performance over time. All this information is then used for the creation of

graphs and the evaluation of the input dictionaries.

5.7 Building Blocks of Contextual Dictionaries

The PCWQ framework can evaluate existing dictionaries lists that stem from leaked

passwords from data breaches, as well as generated dictionary lists. In the quest

to look at the role of context in password selection, leaked lists of dictionaries were

evaluated against datasets of the same semantic topic, i.e., a dictionary list stem-

ming from a website about Manga was used to try to crack passwords from another

dataset about Manga, the results of which are reported in Section 6.3.

But the main focus of this thesis is the generation and evaluation of contextual

dictionaries. For the generation of them, the method that has been selected is illus-

trated in Figure 4.7 of the previous chapter. As can be seen there, the starting point

is a Wikipedia article that covers the topic which the generated contextual dictio-

nary should be about. From there, the equivalent DBPedia article is used to gather

the information needed to create the dictionary. The DBPedia version of Wikipedia

uses mappings to assign an ontology type for each piece of information found in
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the Wikipedia article, something that allows to harvest the links found within the

Wikipedia article. This process is described in more detail in the following sections.

In order to extract information from DBPedia, the Python library rdflib [275] is

used, which is a library for the Resource Description Framework (RDF) [276]. RDF

is a data model that is used to merge graph data when the underlying schemas

differ.

5.7.1 Creating the Layers

The starting point for creating a context-based dictionary is a single seed word/-

topic/phrase and its corresponding DBPedia article. For example, if the objective is

to create a dictionary about Manga, the starting point would be the DBPedia page

for Manga. The first step is to collect all the links on the Manga entry that point to

other related entries. As these are directly connecting to Manga, they are referred

to as the first layer. The next step is to visit these new entries and repeat the same

process; collecting more and more links along the way. Consequently, each new

link is classified into a different layer, according to how many “hops” it is from the

starting point of the graph. A reasonable assumption that is made at this stage is

that a link that resides in layer one, i.e., directly linked to the Manga entry, is likely

to be thematically more relevant to Manga than a link that is on layer two, three, or

subsequent layers.

Furthermore, each new layer added significantly increases the complexity. As

one example, layer one for the DBPedia article for Manga contains 314 entries, while

layer two contains 19,727. Additionally, as many of these entries are interconnected,

i.e., the Manga entry points to the Dragon Ball Z entry and vice versa, particular care

is taken not to include any repeating entries. The interconnected web of the articles

can also be used as a relevancy metric for each page encountered – similar to one of

the indicator’s web search engines use to determine a webpage’s relevancy based
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on how many pages link to it, such as Google’s PageRank algorithm [277].

The length and scope of the dictionary list can be configured at the moment of

generation. It can be limited to one layer, two layers, three layers (CD_3), etc. With

each new layer added, the quantity of data increases exponentially. Therefore, the

trade-off between speed, dictionary length, and ultimate success rate is a consider-

ation.

Furthermore, among the links contained in a Wikipedia (and corresponding DB-

Pedia entry), some generic and non-topic-specific links can be found. These are

usually used for Wikipedia’s internal hierarchy and labelling of contents in each en-

try, and these are excluded from the generated dictionaries.

5.7.2 Dictionary List Sanitation

At the culmination of the previous process, the first version of the dictionary list

is created. At this point, subsequent steps are taken to sanitize this list and ex-

clude entries (or partial entries) that are not contextually close to the starting seed

word(s). Many linked pages from Wikipedia articles have the form List of [Topic] or

Categories: [Topic]. For example, using the Manga seed word, some of the linked

Wikipedia pages include “List of Japanese manga magazines by circulation” and

“Categories: Languages of Japan”. Although the contents of these are themati-

cally relevant and useful, these entries themselves do not offer added value and are

therefore excluded from the dictionary list.

Regarding entries consisting of more than one word, each entry is included in

the resultant password candidate dictionary list in two ways: as a concatenation of

the words without spaces and as separate words. If these separate words consist

of common stop words, they are removed. The removal of stop words happens for

two main reasons; 1) this group of words does not provide any value to the process,

and 2) as the size of the dictionary length decreases, a corresponding decrease in
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processing time follows [278]. As an example, if the entry The Girl From Ipanema is

found, these three entries are added to the list: TheGirlFromIpanema, Girl, Ipanema.

5.8 Dictionary Optimisation

For the purpose of this work, a digital investigation triage scenario is selected, where

the investigator needs to access the data on an encrypted device as soon as pos-

sible. There are many dictionary lists in existence, given a more relaxed time frame

and an abundance of resources, that can perform very well (especially when looking

at sheer numbers of cracked passwords).

However, it is the performance against one (possibly harder) password where

the speed of cracking is of the essence. Therefore, a limited execution time of 15

minutes was selected for these attacks. A key evaluation point for the proposed

approach is how well each dictionary performs against stronger, harder-to-crack

passwords. It should be mentioned here that during this 15 minute process, more

than 10 billion password candidates are evaluated.

This is achievable as the data leaks used for evaluation are in plaintext. To pro-

vide an indication of the runtime for this proposed approach for hash-based pass-

word cracking, assuming a Veracrypt full disk encryption was targeted with an attack

leveraging the latest Nvidia RTX 4090 GPU [279] running at 6.6 kH/s, evaluating the

same number of candidates with a single GPU would take approximately 20 days.

5.8.1 Wikipedia2Vec

Wikipedia2Vec is a Natural Language Processing (NLP) model based on

Word2Vec [280]. Word2Vec can compute vector representations (referred to as em-

beddings) of words, relying mostly on the surrounding context present in the training

dataset. It relies on the Harris’ “Distributional Hypothesis” stating that words that
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occur in the same context tend to have similar meanings.

The word embeddings can subsequently be used to estimate the similarity of the

context in which they have appeared in the training dataset and therefore similarity in

their meaning. Wikipedia2Vec provides embeddings not only for words, but also for

entities, i.e., entries that have corresponding articles on Wikipedia. For this purpose,

a pretrained embeddings model of Wikipedia in English was used [281]. The use

of Wikipedia2Vec returns a similarity score between the seed word and each entry

in the contextual dictionary, allowing for identification of contextual relevant entries

and the ranking of them higher in the dictionary list.

5.8.2 Words vs. Entities

As described above, the source of the entries in the wordlist are Wikipedia articles,

linked to the seed word, either directly or through other articles. During the sanitation

process, many of these are disregarded due to their format, e.g., an image name

is a link but not very useful for a dictionary attack. From the remaining entries,

some are single words and some are phrases/entities. Entities have embeddings

in Wikipedia2Vec, and therefore a similarity score can be computed for them as

well – resulting in a more complete ranking of all the wordlist entries. However,

some entries are not in the training model and therefore a similarity score cannot be

computed. Two avenues were explored to deal with this issue. One was to compute

the average similarity score for each word in the entity, and the other was to assign

the score of the word that was closest to the seed word to the entire phrase, i.e.,

the maximum. For example, if the seed word was “Shopping”, the phrase “Window

Shopping” would be assigned a score of 1.

However, as can be seen from the above example, while “window shopping” is

very relevant to “shopping”, it does not seem like a very likely password. Therefore,

two ranked versions of the wordlists were produced. In the first version, phrases
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were also contained in the list, and they were ranked as described above. In the

second version, the phrases were split into single words and then ranked (duplicates

and stopwords were removed).

The experiments compare three different dictionaries, namely: Ignis-10M and

the ranked and the unranked version of the dictionaries produced by the seed words

in Table 4.5. Before ranking, both versions of the unranked dictionary with either

whole entities or split up to individual words, as described in Section 5.8.2, were

evaluated. The version containing only individual words performed better and was

therefore selected for comparison.

These dictionaries were then evaluated with the same password mangling rule

file. Each rule in the file is a common modification users choose when they

create their passwords, e.g., adding numbers at the end of their password, re-

placing some letters with similar looking numbers, etc. One of the most well-

known rulesets is best64 [282]. For this experiment, a larger ruleset was chosen,

OneRuleToRuleThemAll [283]. This ruleset contains the top 25% performing rules

from several component rulesets, concatenated together and without duplicates.

Finally, the password cracking was conducted with hashcat [144], which is an

open-source password cracking tool instead of the PGF that was used in previous

experiments and the reason for this was speed of results. Hashcat was compared

against the PGF framework and not only did it offer better results, but the decrease

in running time was significant.
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Chapter 6

Results

6.1 Introduction

This chapter presents the results of the experiments outlined in the previous two

chapters of this thesis. More specifically, Section 6.2 discusses the results of the

analysis of the 3.9 billion real-world passwords found in HIBP, including a look at the

statistical makeup of the passwords, a strength classification and a split into their

constituent fragments for further analysis. Section 6.3 contains the results of the

evaluation of real-world passwords with leaked lists stemming from similar commu-

nities, and the first chance in this thesis to put the theory about the impact of context

in passwords to the test. Section 6.4 presents a preliminary evaluation to showcase

the methodology for creating contextual password lists, and Section 6.5 presents a

much larger scale of this evaluation with 10 different datasets from various online

communities. Finally, ranked and optimised contextual password lists are tested

against some of the datasets of the previous experiment in Section 6.6 to showcase

the improvement these techniques present compared to the unranked dictionaries.
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6.2 Results of Statistical Analysis of HIBP

Table 6.1 shows the 20 most popular passwords found in the HIBP dataset, along

with the percentage of the total accounts associated with each password. Many of

these passwords feature heavily on the most common or worst password lists every

year. As can be seen, sequences of numbers and keyboard walks are the most

popular choices found in the Top 20 passwords, as well as some simple English

words.

Table 6.1: Top 20 passwords in HIBP_v5

Password % of Total Accounts

123456 0.596%
123456789 0.197%

qwerty 0.099%
password 0.094%
111111 0.079%

12345678 0.074%
abc123 0.072%

1234567 0.064%
password1 0.061%

12345 0.060%
1234567890 0.057%

123123 0.056%
000000 0.050%
iloveyou 0.041%

1234 0.033%
1q2w3e4r5t 0.030%
qwertyuiop 0.028%

123 0.026%
monkey 0.025%
dragon 0.025%
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Figure 6.1: Most common password lengths in HIBP

6.2.1 Length Distribution

Figure 6.1 provides an overview of the most common lengths of unique passwords in

the dataset, i.e., the aforementioned 515,680,539 passwords. One statistic that im-

mediately stands out is that more than 30% of the unique passwords from HIBP_v5

are eight characters long. A highly probable explanation for this is that most pass-

word guidelines and policies specify minimum length requirements, such as the 8

characters minimum in the NIST recommendation [101]. The second most frequent

length is 10 – corresponding to 17% of the passwords. The overall password length

ranges from 1 to 449 characters, yet 84% of the passwords have a length that falls

into the 6-12 character range.

6.2.2 Character Sets Usage

An analysis of the character type composition of the unique HIBP_v5 passwords

can be seen in Figure 6.2.

Figure 6.2 shows the distribution of these categories, where in other the low-

est represented categories are combined. As can be seen in the figure, 46% of

the passwords are composed of a mix of lowercase characters and numbers, which
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Figure 6.2: Occurrence of combinations of character categories in HIBP

is consistent with Weir et al. [12] and their findings from analysis of the RockYou

dataset. The second and third-largest classes correspond to passwords composed

of only lowercase (24%) or only numbers (8%) respectively. One notable obser-

vation from this analysis, is that over 75% of passwords from the dataset contain

neither special nor uppercase characters. This is not such an unexpected outcome,

as most password policies require at least 2 different character sets to be present in

a password [284].

6.2.3 Pattern Analysis

The 15 most common masks from the HIBP_v5 dataset are shown in Figure 6.3.

The most common mask is stringdigit, meaning that the passwords of this category

are composed of a string (lowercase and/or uppercase) immediately followed by one

or more numbers, e.g., paSSword123). As determined by Tatlı [285], users typically

pick an alphanumerical string, commonly a word or a name, and add numbers at

the end to fulfil the length and character set requirement of the enforced password

policy. The next most common masks are string, digit and digitstring. These four

masks combined represent over 75% of the passwords.
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Figure 6.3: Most common simple masks in HIBP

Table 6.2: Breakdown of password fragments per category

letters 1,074,196,225
numbers 439,727,373
special 61,366,778

total 1,575,290,376

6.2.4 Analysis on Password Fragments

At this point, two cases were possible for the advanced analysis: either analysing

the unique passwords, or analysing the passwords considering the number of occur-

rences in the dataset. The latter option better maps the human behaviour, and there-

fore the below analysis relies on the 3.9 billion non-unique passwords of HIBP_v5.
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Table 6.3: Top 50 letter, number and special character fragments

Letter Count Number Count Special Count

a 2.335% 1 8.240% . 0.871%
i 1.168% 123456 5.137% _ 0.666%

qwerty 0.597% 123 2.574% ! 0.469%
password 0.510% 2 2.398% @ 0.334%

love 0.484% 123456789 2.083% - 0.327%
my 0.356% 3 1.788% : 0.140%
abc 0.274% 4 1.578% # 0.105%
to 0.259% 5 1.111% * 0.090%
an 0.259% 12 1.079% $ 0.071%

qwe 0.248% 7 1.029% 0.065%
in 0.238% 0 0.870% & 0.045%

the 0.228% 8 0.812% + 0.042%
qaz 0.223% 6 0.810% ? 0.037%

ilove you 0.221% 12345 0.764% , 0.035%
ws 0.217% 9 0.761% / 0.031%
as 0.209% 1234 0.664% !! 0.025%
no 0.198% 11 0.599% .: 0.023%

ilove 0.196% 13 0.518% &# 0.022%
by 0.191% 12345678 0.474% = 0.021%

man 0.190% 01 0.430% ; 0.018%
baby 0.178% 10 0.425% .. 0.017%
on 0.176% 1234567890 0.418% ’ 0.016%
it 0.156% 111111 0.411% % 0.014%

we 0.145% 22 0.390% < 0.014%
go 0.145% 23 0.375% ( 0.011%
he 0.145% 123123 0.365% [ 0.011%
asd 0.134% 1234567 0.360% ) 0.011%
sexy 0.131% 69 0.331% ** 0.010%
you 0.128% 21 0.321% ... 0.010%
boy 0.126% 14 0.284% :, 0.009%
of 0.124% 15 0.248% ‘ 0.009%
qa 0.117% 09 0.248% $$ 0.008%
girl 0.116% 08 0.236% __ 0.007%

fuckyou 0.114% 07 0.224% !!! 0.007%
july 0.113% 99 0.224% @@ 0.006%

angel 0.111% 24 0.222% – 0.005%
ma 0.109% 88 0.221% ., 0.005%

march 0.107% 16 0.212% ^ 0.005%
dog 0.106% 18 0.209% ∼ 0.004%
at 0.105% 000000 0.207% !@ 0.004%
big 0.103% 17 0.206% !∼! 0.004%

monkey 0.102% 00 0.204% > 0.004%
one 0.101% 19 0.202% *** 0.004%
alex 0.099% 77 0.193% !@# 0.004%
red 0.095% 33 0.190% ] 0.003%
us 0.094% 20 0.187% ?? 0.003%

qwer 0.094% 123321 0.183% ++ 0.003%
qwertyuiop 0.094% 25 0.181% " 0.003%

dragon 0.092% 666 0.174% ??? 0.003%
life 0.091% 06 0.170% == 0.002%

shark 0.090% 89 0.150% ***** 0.002%
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Óðinn produced 1,575,290,376 fragments out of the unique passwords in

HIBP_v5, the breakdown of which can be seen in Table 6.2. The three lists, namely

letters, numbers and special characters, were further processed in order to see the

most common fragments of each category. A full table of the Top 50 most frequent

fragments in all three categories can be found in Table 6.3. Interestingly, 9 out of

the top 10 number fragments found across the HIBP dataset are the same as those

found in RockYou in an earlier study [12]. The only entry not to feature in the top 10

of RockYou is 123456789 which is replaced 13.

a and i, which were respectively classified as an article and a pronoun, hold the

top spots. As they are frequently encountered in the “Top Worst Passwords” lists

verbatim or as parts of a password, qwerty, password and love are expectedly

rounding out the top 5 [286]. In the top 50 there are some fragments that consist

of phrases, such as iloveyou. The reason this is not broken down further is that,

as mentioned in Section 5.4, the training of Óðinn was done with Reddit comments

and this phrase appeared verbatim there and is therefore considered a single word.

Furthermore, keyboard walks such as qwerty, qwe, qaz are featuring promi-

nently in the top 50 for both word and number fragments. The same holds true for

the top 50 number fragments, where 3 out of the top 5 most frequent fragments

are sequences of numbers. Furthermore, single digits, 1, 2, 3, double digits 12, 11,

13, and number repetitions 111111, 000000, are encountered in the top 50 number

fragments. When it comes to special characters, the top 15 most encountered spe-

cial characters are single, followed mostly by patterns of repetition. It is worthy to

mention that the order of magnitude for the top 50 special characters is one order

smaller than the top 50 letters and numbers. This corroborates the suggestion that

users prefer alphanumeric characters and tend to avoid those that require multiple

keys to type, as is often the case with special characters [195].

Looking further down at the number-based fragments, some noteworthy frag-

130



6.2. RESULTS OF STATISTICAL ANALYSIS OF HIBP

ments are found in the top 500. When it comes to numbers, many four-digit numbers

were found in the top 500 number fragments falling within the 1900 to 2020 range,

i.e., common years. The first appearance of a four-digit number that is presumably

a year is 2010 at no. 56 and subsequently an overall of 37 four-digit numbers be-

tween 1970 and 2010 appear in the top 200 alone. This leads us to believe that

users often choose memorable patterns even for the number portion of their pass-

words, e.g., year of birth or other important dates. In what concerns special-based

fragments, most of them are repetitions of the same character, e.g., “!!” at rank 16.

Some meaningful structure was still present in the top 500 in the form of emojis,

such as “:)” at rank 65 or “^_^” at rank 198.

6.2.5 Analysis on Classified Fragments and Passwords

Table 6.4 Lists the most frequent classes of fragments occurring in the HIBP pass-

words. The fragments that were not classified at all or those not semantically mean-

ingful, i.e., char/twochar/threechar, were filtered from this list. The three first classes

are related to numbers, either generic ones like single digits, common ones, e.g.,

123456 or 1111, etc., or years. On one hand, this can be explained by the fact that

many password policies require passwords to contain more than just letters. On the

other hand, numbers are also very popular in Asian countries, most probably due

to the fact that they can be digitally entered more easily than ideograms, especially

on mobile devices [252]. The top 25 classes contains semantically-rich categories

such as cities, animals, food and sports, reinforcing the idea that the surrounding

context of a person might influence the choice of the password. However, it is not

possible to affirm with conviction that this is the case, e.g., the name of a city can be

unrelated to the person who chose it.

Identifying the most common combinations of component passwords classes

enables the analysis of the unique classes. The results are displayed in Table 6.5.
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Table 6.4: Most frequent classes of component password fragments. The count represents
how many passwords in which this class occurred at least once.

Count Percentage Class
1,223,930,168 30.97% number
674,454,756 17.07% common-number
338,857,959 8.57% year
297,403,194 7.53% masculine_name
266,976,738 6.76% feminine_name
179,058,386 4.53% name
109,891,541 2.78% article
102,376,618 2.59% pronouns
97,630,848 2.47% city
92,259,083 2.33% special
81,998,629 2.07% keyboard
61,214,229 1.55% prepositions
57,435,482 1.45% animal
50,064,712 1.27% connector
49,162,058 1.24% family
45,663,992 1.16% computers
40,156,119 1.02% people
37,866,704 0.96% person.n.01
33,855,125 0.86% swear
29,082,262 0.74% food
27,575,938 0.70% colours
25,638,436 0.65% emotions
23,799,390 0.60% sports
22,868,852 0.58% love
20,607,713 0.52% negative

Similar to the most frequent fragments, numbers and names are commonly used

in combination with other classes. The number-based passwords are followed by

various combinations of female and male names in combination with appended sin-

gle digits or larger numbers. When password policies require more than one type

of character, users might consider “padding” their passwords with special symbols

and/or numbers, like years, at the end in order to fulfil the length requirement. Fur-

thermore, keyboard walks and cities are also popular choices.
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The division of passwords among those classes is displayed in Table 6.6.

Table 6.6: Percentage of unique passwords per zxcvbn class

Score 0 1 2 3 4
Percentage 0.04% 14.7% 47.3% 26% 12%

6.2.6 Password Guessability

The analysis of the guessability of passwords is outlined below for two scenarios,

namely a fast and a slow hash function. For this purpose, the length of passwords

in each of those classes has been measured. Figure 6.4 shows the proportion of

passwords of a given length for each of the classes produced by zxcvbn. In the case

of a fast hash function, passwords belonging to class 2 and below can be recovered

by an exhaustive search and should therefore be considered as really weak.

zxcvbn provides, together with the score, an approximation of the number of

guesses an adversary would need to guess a password. Based on this figure, a

Table 6.5: Most frequent password fragment combinations x represents fragments that were
not classified.

Count Percentage Combination
437,959,119 11.08% common-number
432,721,719 10.95% number
48,306,129 1.22% feminine_name
45,713,052 1.16% masculine_name + number
45,344,781 1.15% masculine_name
39,786,125 1.01% feminine_name + number
33,685,017 0.85% x + year
27,958,256 0.71% feminine_name + digit
26,308,310 0.67% masculine_name + digit
25,821,041 0.65% keyboard
24,678,272 0.62% city
23,689,948 0.60% name
21,252,289 0.54% masculine_name + year
20,815,196 0.53% x + common-number
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Figure 6.4: Password length distribution within zxcvbn score classes for HIBP passwords

password belonging to class 3 could be recovered using a single 2080 Ti graphics

card in a time frame of approximately 5 days in the case of a slow hash function.

Therefore, a digital investigator targeting a single password will manage to retrieve it.

While this figure is indicative, it reveals that passwords in class 3 and below should

be considered weak, especially as this time frame is only considering the use of a

single graphics card. Adding another graphics card will effectually reduce the time

linearly.

Class 4 passwords, at a first glance, are more secure. The minimum length

of these passwords is 11 and 75% of those passwords have a length between 11

and 15. Based on the results from Óðinn, those passwords are composed of more

fragments than on average, with 4.4 fragments for class 4 passwords versus 2.1

fragments for all passwords in HIBP_v5. According to the number of guesses re-

quired, which has an average of 5.8 × 1024, passwords in this class are more re-

sistant to classical attacks – even considering a fast hash function. However, 42%

of these passwords are solely composed of lowercase characters and numbers. If

prior knowledge about a given password is known, such as frequent used pattern(s)

derived from other passwords of the same user, specific targeted attacks become
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possible. The time required to fully explore the most common patterns of the pass-

word from class 4 considering a fast hash function is highlighted below:

• 15 digits - 11% of the passwords - space fully explored within a day in the

case of MD5. In the case of BCRYPT, it would take 1268.3 years considering

a 2080Ti NVIDIA GPU.

• 12 lowercase - 2% of the passwords - space fully explored in approximately

22 days in the case of MD5 and in 120,961 years in the case of BCRYPT.

• 11 lowercase - 2% of the passwords - space fully explored within a day in the

case of MD5 and 4655.4 years in the case of BCRYPT.

Table 6.7: Comparison of the most frequent classes of password fragments between all the
passwords and those from Class 4 in HIBP

Class All Passwords Class 4 Passwords
number 30.97% 49.95%
common-number 17.07% 5.03%
year 8.57% 14.8%
masculine_name 7.53% 8.34%
feminine_name 6.76% 7.41%
name 4.53% 8.75%
article 2.78% 7.05%
pronouns 2.59% 6.14%
city 2.47% 2.24%
special 2.33% 12.73%

Exhaustive search is nevertheless not the recommended approach to recover

strong passwords. These figures serve to illustrate that even passwords consid-

ered as secure can be recovered when prior knowledge is available. To reinforce

this idea, the advanced analysis results for the passwords of this specific class is

presented. Table 6.7 highlights, for the 10 most used types of fragment, how of-

ten they appear in all passwords compared to class 4. As rightly recommended
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by strong password policies, the number of occurrences of number-based frag-

ments and special-based fragments is higher for the class 4 passwords. The fre-

quency of years is higher while the frequency of common-numbers is much lower,

yet this might be due to a weak classification of number-based fragments. What

remains interesting is that names, either masculine, feminine or proper names, are

more present than in the average password. Other “contextualised” categories re-

main present, with mostly minor fluctuations. Two more noticeable differences are

the classes of computer-based words, moving from 1.16% to 2.02%, and cooking-

related words, moving from 0.49% to 0.96%.

Therefore, if passwords belonging to class 4 are on average longer and com-

posed of more fragments, additional knowledge about the person whose password

they want to retrieve would be beneficial and could tilt the balance in favour of the

attacker.

6.2.7 A Brief Contextual Analysis of MangaTraders

As part of this analysis, and in order to investigate the hypothesis that there is a link

between the thematic content of a website and the password chosen, it was decided

to look at one specific leak from hashes.org. The leak that was chosen came from

the website MangaTraders.com. The leak contains 881,468 entries (with 618,237

unique passwords). The pipal tool was used to extract the top 100 passwords, as

well as the top 100 base words. A base word is defined as a password where

non-alpha characters from the beginning and end have been removed. Table 6.8

shows that the top 100 passwords represent 4.76% of the total number of accounts.

From these 41,821 passwords, 15,758 (or 37.6%) are manga related (representing

1.79% of the total number of accounts). Interestingly, looking at unique passwords

only (and not counting the number of occurrences, 51 out of the top 100 passwords

were related to manga. When it comes to base words, the percentage of manga
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related base words is even higher (3.29% of the total and 63.8% of the top 100 base

words).

Table 6.8: Manga related passwords in MangaTraders.com

Total Manga related
Top 100 Passwords 41,821 (4.76%) 15,758 (1.79%)
Top 100 Base Words 45,206 (5.15%) 28,783 (3.29%)

This reinforces the assumption that users are inspired by the purpose and the-

matic content of the website they create their password for. Of course, a more ex-

tensive analysis of how exactly and to what extent, the thematic content correlates

to the passwords chosen is warranted but beyond current scope.

6.3 Results of Dictionary Quality Assessment

In this section, an experimental analysis of how the dictionary evaluation process

framework works is presented. In this experiment, the main focus is assessing

password candidates that stem from leaked databases, to see whether a wordlist

that is thematically similar to the list of passwords to be cracked can yield better

results than a generic wordlist.

In this example use case, the evaluation datasets, BoostBot and MangaFox, as

well as RockYou are used without modification with all four password crackers and

10 billion candidates were generated and evaluated for each process. The reason

that 10 billion candidates were chosen is analysed in Section 4.9.4. The results

of the cracking progress over time for RockYou, MangaFox and BoostBot can be

found in Figure 6.5. As can be seen in all three figures, PCFG performs better

for all three datasets and, especially in the case of RockYou, the result is much

more distinguished. Comb4 contains 1,253,531 passwords, of which 1,096,481

are unique. Of these, RockYou PCFG managed to crack more than 60% (768,341)
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or in case of unique passwords, 617,016. This result is significantly more than the

other three guessers, but also significantly more than MangaFox and BoostBot. In

fact, RockYou performed better than both of those datasets with all four guessers.

This result is not a surprise because the first key difference between RockYou

and MangaFox and BoostBot is their size, as seen in Table 4.1. RockYou is about 32

times larger than MangaFox and 100 times larger than BoostBot. This means that

there is certainly more diversity in the password candidates generated with Rock-

You. If then the focus shifts on only MangaFox and BoostBot, MangaFox performed

slightly better, which can be on account of its larger size but also on the fact that

the largest dataset in Comb4 is Manga traders, which is also another manga related

leak.

Furthermore, it can be seen that PRINCE under performed with the smaller

datasets, while it had the second-best performance with RockYou. This is due to

the principle of PRINCE combining entries of the input dictionary to create new can-

didates. The input in the two smaller datasets are more sophisticated than those

in RockYou. There, their concatenation leads to very complex candidates with a

low probability of being in the targeted list. A pre-processing could be applied in

PRINCE to better integrate such type of input wordlist.

JtR on the other hand, steadily improved throughout the cracking process, al-

most reaching PCFG towards the end for both MangaFox and BoostBot.

Because the amount of cracked passwords, as mentioned in Section 4.7 cannot

be the only metric to take into account - otherwise RockYou would have been the

clear winner - the strength classes of the cracked passwords by each dataset were

also examined.

In order to evaluate that, zxcvbn, as referenced in Section 3.9.4, was used. With

zxcvbn passwords are divided into 5 classes, according to their strength, i.e., how

well they would withstand a cracking attack, with class 0 being the least secure and
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(a) RockYou

(b) MangaFox

(c) BoostBot

Figure 6.5: Cracking Comb4: Progress over time for each dictionary
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Table 6.9: Strength distribution of Comb4

Comb 4 AxeMusic JeepForum MangaTraders Minecraft

Class 0 46,645 4,143 34,832 6,471 1,199
Class 1 503,809 93,100 128,279 241,745 40,685
Class 2 395,202 87,158 58,189 205,218 44,637
Class 3 226,243 55,395 16,657 118,840 35,351
Class 4 81,624 12,898 1,388 45,962 21,376

class 4 being the most secure. This classification takes into account rules set by

common password policies but also l33t speak, common passwords and patterns to

make a determination. Table 6.9 shows the classification of Comb4 in these classes

and Figure 6.6 shows the cracked passwords per class for RockYou, MangaFox and

BoostBot respectively, with all four password guessers.

As can be seen in the figures for all three datasets, the distribution of found pass-

words follows the distribution amongst classes of the Comb4 dataset, which can be

seen in Table 6.9. For RockYou, it can be seen that PCFG as expected, performed

better in all classes (except class 0, where all four are on par) with an especially

big difference for class 3 and 4 compared to the other guessers. When it comes

to MangaFox, other than PRINCE, the performance was similar for the three other

guessers. Interestingly, MangaFox and BoostBot were able to find about one third as

many passwords in class 4 as RockYou with PCFG, especially considering the big

difference in size. Even more remarkably, MangaFox and BoostBot outperformed

RockYou in the case of Class 4 with both JtR and OMEN.

Frequently, in real world scenarios, the way to go would not be to choose one

password cracking guesser or input wordlist over the other, but stack them. For

this reason, the next step was to see how using a big input dataset like RockYou

could be complemented, rather than beat. Table 6.10 shows the number of unique
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(a) RockYou

(b) MangaFox

(c) BoostBot

Figure 6.6: Strength of cracked passwords for each dictionary
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Table 6.10: Passwords found by BoostBot and MangaFox but not by RockYou

JtR OMEN PRINCE PCFG

All
BoostBot 26,109 32,911 5,788 17,811

MangaFox 26,694 37,977 3,608 22,121

Class 0
BoostBot 182 265 22 73

MangaFox 210 227 35 109

Class 1
BoostBot 11,960 16,698 3,095 3,659

MangaFox 12,005 14,603 1,664 5,393

Class 2
BoostBot 10,439 11,628 1,730 8,303

MangaFox 12,192 16,702 1,476 11,303

Class 3
BoostBot 3,512 4,171 796 5,266

MangaFox 2,285 6,325 373 4,868

Class 4
BoostBot 16 149 145 510

MangaFox 2 120 60 448

passwords that were found only by MangaFox and BoostBot and not by RockYou, in

total, and also their distribution amongst the 5 classes of zxcvbn.

As can be seen in Table 6.10, this is a substantial addition of found passwords.

In fact, with PCFG, the addition of either the passwords recovered by MangaFox or

BoostBot, brings a 14% increase to the total, which is an important addition, being

that this is the class of passwords that is the least easy to recover. Even in the case

of PRINCE that generally underperformed, 73% for MangaFox and 63% for Boost-

Bot, of the passwords that were found with these two datasets, were not recovered

by RockYou. The recovery of class 4 passwords with OMEN was even more im-

pressive because about twice as many passwords were recovered with MangaFox

or BoostBot compared to RockYou. Finally, even in the case of JtR, with a mea-

gre 2 passwords recovered from MangaFox and 16 from BoostBot, RockYou did not

manage to find any of class 4.
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Table 6.11: Passwords found of each dataset of Comb4, by each input wordlist for all four
password guessers

JtR OMEN PRINCE PCFG

AxeMusic
RockYou 60,583 86,417 88,776 131,485

MangaFox 57,923 67,934 6,456 93,843
BoostBot 57,120 63,969 8,027 86,090

JeepForum
RockYou 96,894 105,232 109,847 133,665

MangaFox 93,250 74,535 7,461 92,265
BoostBot 89,084 72,753 6,966 83,477

MangaTraders
RockYou 267,553 289,903 299,890 373,483

MangaFox 260,126 234,834 18,067 255,964
BoostBot 252,338 221,328 22,121 241,774

Minecraft
RockYou 39,050 42,630 36,335 55,226

MangaFox 41,417 43,171 3,561 50,221
BoostBot 40,624 39,345 5,741 43,953

6.3.1 Breakdown of Comb4

In order to assess the quality of the input wordlists even further, Comb4 was broken

down into the four individual datasets it was generated from, AxeMusic, JeepFo-

rum, MangaTraders and Minecraft. The breakdown of these datasets to zxcvbn

classes is shown in Table 6.9. Additionally, Table 6.11 shows the amount of pass-

words found of each dataset of Comb4, by each input wordlist for all four password

guessers. The result that pops up is that in the case of Minecraft, and excluding the

underperforming PRINCE, the amount of passwords found by RockYou, MangaFox

and BoostBot are very similar. A possible explanation of these results is that the

thematic proximity compensates for the difference in size. In fact, BoostBot is the

smallest dataset (about 100 smaller than RockYou) but thematically is the one clos-

est to Minecraft. And MangaTraders is still a lot more relevant to Minecraft than, for

example, JeepForum.
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Table 6.12: Breakdown by dataset for PCFG, Class 3 and Class 4

MangaFox BoostBot
PCFG Class 3 Class 4 Class 3 Class 4

AxeMusic 1.3% 0.4% 1.6% 0.5%
JeepForum 0.9% 0.6% 0.9% 0.4%

MangaTraders 2.2% 0.7% 2.7% 0.9%
Minecraft 4.1% 0.3% 3.4% 0.2%

Still, it can be seen that for the other three datasets, RockYou performs a lot

better than MangaFox and BoostBot. Even in the case of MangaTraders, while the

results for JtR and OMEN are close, RockYou’s performance for PCFG is signifi-

cantly better, since for PCFG the full RockYou list of 32 millions was used, so that

PCFG can take advantage of repetitions of passwords to form better probabilities.

In this case, the size of the input wordlist makes the difference, and this along

with the percentage of success is the one to watch. Still, as mentioned above, in

real cases the goal is not to choose one wordlist over the other but to complement

it. For this reason another metric is considered again, the performance for stronger

passwords. In Table 6.12 PCFG is the focus, the Class 3 and Class 4 passwords

that were recovered by only MangaFox and BoostBot and not by RockYou. As can

be seen, the percentage of passwords found by these two datasets and not RockYou

was significantly higher for minecraft and MangaTraders, the two datasets that were

contextually closer to MangaFox and BoostBot.

6.4 Experiments with Contextual Dictionaries

To measure the impact of contextual dictionaries, a number of password cracking ex-

periments were conducted to compare the results of a contextual dictionary against

a commonly-used baseline dictionary.
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6.4.1 A Preliminary Experiment

As with the previous experiments, where already existing dictionary lists were evalu-

ated, in this case a newly created dictionary list will be evaluated with the framework

proposed in Section 4. The seed word “Manga” was used for generating dictionaries

of two and three layers, called CD_2 and CD_3 respectively. The lengths of CD_2

and CD_3 are 40,489 and 724,060 respectively, while the lengths of the Comb4 (and

its constituent dictionaries as well as RockYou can be found in Table 4.1 as they are

the same as the previous experiment. For the evaluation of the results, OMEN and

PRINCE were used.

To conduct this preliminary experiment, University College Dublin’s Sonic High-

Performance Computing Cluster was used. This cluster consists of 43 nodes with

memory sizes ranging from 128Gb to 1.5Tb [287]. While time is dependent on

the resources available for password cracking, as a reference, using the High Per-

formance Computing (HPC) cluster, each password cracking run with 10 billion

guesses took approximately 9-10 hours for OMEN, while with PRINCE it took ap-

proximately 14-15 hours. It should be noted that the passwords were in plain text;

therefore, no hashing was involved. The next section provides an overview of the

experiments that were performed and an analysis of the results.

6.4.2 Results of the Preliminary Analysis

Both Comb4 and MangaTraders were evaluated using CD_2, CD_3, and RockYou

as input dictionaries. 10 billion password candidates were generated again from

each of the three evaluation dictionaries for both the OMEN and PRINCE attacks.

The results of the cracking progress over time for CD_2, CD_3 and RockYou with

Comb4 and MangaTraders using OMEN can be found in Figure 6.7. Likewise, the

results of the cracking progress over time for CD_2, CD_3 and RockYou with Comb4
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and MangaTraders using PRINCE can be found in Figure 6.8 (a) and Figure 6.8 (b)

respectively.

(a) Comb4

(b) MangaTraders

Figure 6.7: Dictionary evaluation for CD_2, CD_3 and RockYou using OMEN

A key difference between Figures 6.7 (a) and 6.7 (b) (which represents OMEN)

and Figures 6.8 (a) and 6.8 (b) (which represents PRINCE), is that CD_2 is more

performant compared to CD_3 using OMEN and CD_3 is better with PRINCE.

The explanation for this resides in the inner configurations of each of these tools.
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(a) Comb4

(b) MangaTraders

Figure 6.8: Dictionary evaluation for CD_2, CD_3 and RockYou using PRINCE

For CD_2, which is significantly smaller than CD_3, there are more variations of

the same password candidate being attempted for the constant fixed number of

guesses, i.e., 10 billion for each password cracking run. For OMEN, which pro-

duces candidates in order of decreasing popularity, this means that the most likely

candidates will be not only checked first, but checked with a higher number of vari-

ations, i.e., more mangling rules applied, in the case of CD_2 compared to CD_3.
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For PRINCE, which is based on combining dictionary words, a larger dictionary list

offers a wider range of combinations, and therefore CD_3 performs better.

As expected, RockYou performs the best using OMEN and PRINCE. The rea-

son for this is that RockYou is a 14 million-long dictionary of real-world passwords,

while CD_2 and CD_3 are 345 and 19 times smaller, respectively. Not only is the

size difference significant, but RockYou is also a diverse dictionary that represents

to a very large extent how people create their real-world passwords. RockYou is

indicative of the password culture across society, which is why it is one of the most

popular dictionaries for password cracking attacks.

When comparing Figure 6.7 (a) to Figure 6.7 (b) and comparing Figure 6.8 (a)

to Figure 6.8 (b), it is notable that the number of recovered passwords from Man-

gaTraders is about half of what it is for Comb4. This is particularly interesting con-

sidering the fact that Comb4 contains 1,096,481 unique passwords, about twice as

many as MangaTraders. This means that CD_2 and CD_3, have performed very

well when the passwords they are trying to crack are of non-identical, but similar,

context.

Strength Analysis

If the number of cracked passwords is the only metric taken into account, then Rock-

You is the best performer. In this case, a larger and more diverse dictionary list

performs the best and cracks the most passwords. However, in many real world

scenarios, other measures of performance take precedent over the sheer number

of recovered passwords. For example, if time is of the essence or a single, strong

password needs to be cracked, RockYou might not be a good choice.

This is why it is important to also examine other metrics. For example, how

strong are the passwords being cracked? For this, the password strength meter

zxcvbn, which is the Dropbox-developed strength meter, has been used. According
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to this meter, passwords are classified into five different classes based on how easily

they can be cracked. Class 0 is considered the most easy to crack, while Class 4

contains the passwords that are deemed the most difficult to crack.

Figure 6.9: Passwords cracked by OMEN with CD_2, CD_3 and RockYou, classified by
zxcvbn

Figure 6.10: Passwords cracked by PRINCE with CD_2, CD_3 and RockYou, classified by
zxcvbn

Figure 6.9 shows how many passwords have been cracked per zxcvbn Class

for CD_2, CD_3 and RockYou using OMEN and Figure 6.10 shows the correspond-

149



6.4. EXPERIMENTS WITH CONTEXTUAL DICTIONARIES

Table 6.13: Strength distribution using zxcvbn for CD_2, CD_3 and RockYou, using OMEN

RockYou CD_2 CD_3

Class 0 5,332 3,551 3,182
Class 1 182,719 87,260 61,519
Class 2 86,678 25,819 20,312
Class 3 15,110 2,003 2,220
Class 4 64 50 56

Table 6.14: Strength distribution using zxcvbn for CD_2, CD_3 and RockYou using PRINCE

RockYou CD_2 CD_3

Class 0 6,003 3,269 3,782
Class 1 193,001 114,135 155,925
Class 2 82,985 33,200 45,910
Class 3 15,817 2,355 4,558
Class 4 2,084 254 257

ing results from using PRINCE. It can be seen that, for both OMEN and PRINCE,

the number of Class 1 passwords that have been cracked with RockYou is very

large. The reason for this is that RockYou is a generic dictionary list of popular

passwords. It is reasonable that RockYou would perform well for passwords that are

easy to crack. With zxcvbn, passwords from Classes 0 to 2 belong to this “easy”

category [4].

Tables 6.13 and 6.14 offer a breakdown of how many passwords were cracked

by each dictionary per class and per cracking tool. As can be seen in Table 6.13,

when it comes to OMEN, for Class 4 passwords, all three dictionaries did not per-

form well. Nevertheless, CD_2 and CD_3 cracked almost as many passwords as

RockYou, which is an important feat, given the discrepancy in dictionary size be-

tween the three dictionaries. When it comes to the rest of the classes, the results
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Table 6.15: Passwords only found using the contextual-based approach of Manga 2 layers
or 3 layers (OMEN)

CD_2 Unique CD_3 Unique

Class 0 106 72
Class 1 6,812 2,964
Class 2 4,721 2,430
Class 3 905 860
Class 4 49 52

are more impressive, with the passwords found by CD_2 and CD_3 ranging be-

tween 13% and 47% of those found by RockYou in each Class. Looking at PRINCE,

the results are comparable and most impressively, for Class 1, CD_3 found 80% of

the passwords that RockYou found, as can be seen in Table 6.14. When it comes

to Class 4, PRINCE was significantly better than OMEN, and CD_2 and CD_3 re-

covered approximately 12% of the passwords recovered by RockYou. However, the

overlap of the results achieved using CD_2 and CD_3 versus RockYou is not what

demonstrates the true value of the proposed approach.

6.4.3 Considerations of a Real-World Application/Unique Pass-

words

If a real-world law enforcement password cracking scenario is considered, RockYou

(or similar) can be used to crack passwords while simultaneously using the approach

proposed as part of this research. The value of this approach lies in the analysis

of the passwords that using CD_2 and CD_3 were able to crack that using Rock-

You alone did not. Table 6.15 outlines the number of unique passwords per class

that were cracked solely by CD_2 and CD_3 respectively, and were not cracked by

RockYou using OMEN and Table 6.16 shows the same for PRINCE. From these two
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Table 6.16: Passwords only found using the contextual-based approach of Manga 2 layers
or 3 layers (PRINCE).

CD_2 Unique CD_3 Unique

Class 0 12 12
Class 1 3,265 14,545
Class 2 4,092 12,927
Class 3 1283 2,619
Class 4 46 179

tables, it can be observed that, in fact, there is value in running the context-based

dictionary attack in conjunction with RockYou.

As mentioned before, for Class 4 passwords using OMEN, CD_2 cracked 50

passwords and RockYou cracked 64. However, what is notable about that is that

49 of those passwords recovered by CD_2 were unique to CD_2, bringing the total

number of Class 4 passwords cracked to 113. This is an increase of 76.5% com-

pared to simply running RockYou. A similar increase can be observed in the case of

CD_3 in the recovery of unique passwords for CD_3 versus RockYou. Therefore, it

can be observed that even though the absolute numbers are low compared to more

easily crackable classes of passwords, the amount of extra passwords cracked with

custom, targeted dictionaries is substantial.

Another class with a significant number of unique passwords cracked using

CD_2 and CD_3 versus RockYou is Class 3, with a 5.7% and 5.4% increase of

cracked passwords using CD_2 and CD_3 respectively. Overall, the fact that the

extra percentage of unique passwords cracked using CD_2 and CD_3 were most

significant for the two most difficult classes proves that the proposed approach is

valid and that targeted, contextual dictionary lists can offer a significant advantage

to the cracking process. This can be put into context even more, if a digital investiga-

tion with a tech-savvy suspect is considered, where - if their password is vulnerable
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to dictionary attacks - it’s still more likely to be Class 3 and above.

In general, the highest increase in found passwords was achieved with CD_3

and PRINCE. CD_2 achieved finding 10.1% more passwords that were not already

recovered by Rock You. For Class 1 passwords, this increases to 15.5%. This is

a very significant percentage, especially considering that - as mentioned above -

the custom dictionaries performed especially well with the classes of stronger pass-

words. It could be argued that when time is of the essence, the targeted approach

(because the size of the dictionary list is much smaller) could be the first tool to be

used in the toolkit of the investigator.

6.5 Evaluating Dictionary Generation

As mentioned in Chapter 4, ten datasets across various topics were chosen. Re-

lated contextual dictionaries with the help of Wikipedia/DBPedia were created. The

depth of the dictionaries was selected as 3 and the number of guesses as 10 bil-

lion, as defined in the previous section. The cracking process over time for these ten

datasets, with both the baseline dictionary (Ignis-10M) and the contextual dictionary,

can be seen in Figure 6.11.

From Figure 6.11, it can be observed that for all ten datasets, Ignis-10M is the

best performing dictionary. This is to be expected, as Ignis-10M is a compilation

of different data leaks and contains some of the most popular passwords used by

real-world users. Ignis-10M is also a 10 million entry dictionary, while the contextual

dictionaries, as seen in Table 4.5 range from 1 million to 30 thousand candidates.

It is therefore expected that Ignis-10M will perform better in comparison, and it will

crack the most passwords across all different datasets as it is the most varied dic-

tionary.

Focusing a little more into the varying results of the ten different contextual dic-
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(a) AxeMusic (Music) (b) JeepForum (Car)

(c) Minecraft (Minecraft) (d) MangaTraders (Manga)

(e) Wattpad (Fanfiction) (f) Battlefield (Battlefield)

Figure 6.11: Passwords cracked by Ignis-10M and bespoke layer 3 dictionaries (seed word
for bespoke dictionary in parentheses
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(g) Wanelo (Shopping) (h) EverydayRecipes (Cooking)

(i) Zynga (Zynga) (j) DoSportsEasy (Sports)

Figure 6.11: (cntd.) Passwords cracked by Ignis-10M and bespoke layer 3 dictionaries
(seed Word for bespoke dictionary in parentheses)

tionaries (denoted as L_3s), it can be seen in Figure 6.11 that Music_3 and Car_3

had some of the best performances, while Sports_3 had the worst. This can be ex-

plained by the size of these dictionaries, with Music_3 being 1 million while Sports_3

is only 30 thousand. A dictionary of 30k candidates, even with the permutations

allowed by 10 million guesses, cannot produce enough variance. This serves to

highlight the importance of picking the correct seed word for generating a dictionary.

If instead of “Sports”, “Sport” was chosen as the seed word, the layer 3 dictionary

Sport_3 would contain 1,068,758 candidates, which is a very significant increase
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Table 6.17: Total passwords cracked and improvement of the combination approach. The
L_3 Excl. column contains passwords found only by L_3 dictionaries, while the L_3 Imp.
column contains the improvement over Ignis-10M provided by the L_3 dictionaries.

Dataset Ignis-10M L_3 L_3 Excl. L_3 Imp.

AxeMusic 41.3% 20.5% 2.47% 5.97%
JeepForum 68% 39.2% 2.32% 5.19%
Minecraft 38.4% 11.2% 0.76% 3.88%
MangaTraders 57.2% 28.2% 2.61% 4.56%
Wattpad 39.7% 15.2% 0.69% 17.86%
Battlefield 60.6% 29% 2.21% 3.64%
Wanelo 42.1% 19.3% 2.38% 5.64%
EverydayRecipes 64.4% 36.7% 2.24% 3.47%
Zynga 37.9% 15.7% 1.22% 10.61%
DoSportsEasy 41.7% 1% 0.06% 0.15%

over Sports_3. If “Sport” was used as a seed word instead, then better results

would be achieved when cracking DoSportsEasy, but the decision was made to use

“Sports” to demonstrate the pitfalls of picking a bad seed word.

One interesting metric when it comes to the performance of these contextual

dictionaries is how well they would do “stacked”, i.e., in a combination attack. To

this end, Table 6.17 shows the percentage of unique passwords cracked by Ignis-

10M and the L_3 contextual dictionaries. Column 3 of the table also presents the

percentage of passwords that were only cracked with the L_3 dictionaries for each

of the ten cases, i.e., the exclusively cracked passwords. Finally, Column 4 presents

the improvement over Ignis-10M if it is combined with the contextual approach.

As can be seen in Table 6.17, in most cases the contextual dictionary has found

approximately half the passwords found by Ignis-10M. Although in some cases, like

JeepForum and EverydayRecipes, this number is even higher. Considering that

Ignis-10M is compiled by a number of different data leaks and therefore contains

actual used passwords across a range of services, the results of the L_3 dictionar-
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ies that are only dictionary words without any extra modification, is quite impressive.

Once again, the only outlier is Sports_3, but this is somewhat expected since the

input dictionary that was created from DBPedia contained only 30 thousand candi-

dates.The passwords found exclusively by the contextual dictionaries offer on aver-

age an additional 2% of passwords, which in some cases represents a significant

improvement over what was found by Ignis-10M alone.

For example, with the Wattpad leak, while the passwords found exclusively by

Fanfiction_3, represent a 0.69% increase, this translates to a 17.86% improvement

over Ignis-10M. The reason for this is that while Ignis-10M finds more passwords,

these are passwords that are repeated many times in the leak, while the passwords

found by Fanfiction_3 do not have as many repetitions. This could indicate that the

passwords found by Fanfiction_3 are less frequently chosen by users and therefore

less encountered.

It can also be observed that the choice of either generalising the seed word

or keeping it the same as the target dataset did not influence the results in any

significant manner. Nonetheless, from the five best performing dictionaries, four

were from the “generalised seed word” category.

Looking at the case of a single law enforcement officer wanting to gain access to

an encrypted device, the number of popular passwords cracked from one data leak

is not the optimal way to judge the effectiveness of a dictionary. In fact, if a suspect

is hiding behind an encrypted device, it is reasonable that they are more tech-savvy,

and it follows that there is a good chance their password would be stronger than

those found on the most popular password lists.

It is therefore important to also look at the quality of passwords cracked by the

baseline dictionary and the contextual approach, i.e., the strength of these cracked

passwords. To this end, Figure 6.12 shows the breakdown of the found passwords

by both approaches, classified into five classes of strength. The password strength
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(a) AxeMusic (Music) (b) JeepForum (Car)

(c) Minecraft (Minecraft) (d) MangaTraders (Manga)

(e) Wattpad (Fanfiction) (f) Battlefield (Battlefield)

Figure 6.12: zxcvbn classification of passwords cracked by Ignis-10M and bespoke layer 3
dictionaries (seed word for bespoke dictionary in parentheses)
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(g) Wanelo (Shopping) (h) EverydayRecipes (Cooking)

(i) Zynga (Zynga) (j) DoSportsEasy (Sports)

Figure 6.12: (cntd.) zxcvbn classification of passwords cracked by Ignis-10M and bespoke
layer 3 dictionaries (seed word for bespoke dictionary in parentheses)

meter that was used for this classification is zxcvbn and the five classes range

from 0 to 4, with Class 0 being the weakest passwords and Class 4 containing

the strongest.

As can be seen in Figure 6.12, Class 1 and Class 2 passwords are those most

commonly found, mostly from both Ignis-10M and the contextual dictionaries. This

is because the passwords in these categories are easier to crack and would most

likely be found by various approaches, as confirmed by [4]. It is therefore the Class

3 and Class 4 passwords that are the most interesting.

Tables 6.18 and 6.19 outline the passwords found by Ignis-10M, L_3, the ex-
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Table 6.18: Class 3 passwords. The L_3 Excl. column contains passwords found only
by L_3 dictionaries, while the L_3 Imp. column contains the improvement over Ignis-10M
provided by the L_3 dictionaries.

Dataset Ignis-10M L_3 L_3 Excl. L_3 Imp.

AxeMusic 4,504 581 286 6.3%
JeepForum 3,770 276 118 3.1%
Minecraft 3,247 80 46 1.5%
MangaTraders 24,524 1,906 942 3.8%
Wattpad 223,567 16,854 7,758 3.5%
Battlefield 17,330 755 281 1.6%
Wanelo 47,604 3,855 1709 3.6%
EverydayRecipes 254 41 24 9.4%
Zynga 417,404 33,752 15,735 3.8%
DoSportsEasy 934 6 1 0.1%

clusively retrieved by L_3, and the improvement percentage for Class 3 and Class

4 passwords cracked. By examining these two tables, it is notable that on aver-

age, approximately half the passwords found by L_3, are not found by Ignis-10M,

cementing the importance of the proposed contextual dictionaries further. Further-

more, it can be observed that although the numbers are smaller compared to Class

3, Class 4 contains the strongest passwords and the percentage improvement of

using L_3 on top of Ignis-10M is higher for Class 4. Notable examples are Fanfiction

and Music achieving a 4.9% and 7.7% improvement respectively, In addition, for

EverydayRecipes the percentage improvement is 42.8%, while acknowledging that

the absolute numbers of recovered passwords are quite low for both.

6.6 Evaluation of the Ranked and Optimised Gener-

ated Dictionaries

As mentioned in Section 4.10, four datasets stemming from data leaks centring on

cars, music, manga and fanfiction were selected. For each topic, a contextual dic-

tionary was produced starting from each seed word, which represents the unranked
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Table 6.19: Class 4 passwords. The L_3 Excl. column contains passwords found only
by L_3 dictionaries, while the L_3 Imp. column contains the improvement over Ignis-10M
provided by the L_3 dictionaries.

Dataset Ignis-10M L_3 L_3 Excl. L_3 Imp.

AxeMusic 351 42 27 7.7%
JeepForum 96 9 5 5.2%
Minecraft 667 5 3 0.4%
MangaTraders 4,554 152 90 1.9%
Wattpad 15,022 1,095 673 4.9%
Battlefield 2,487 51 25 1.0%
Wanelo 2,953 199 100 3.4%
EverydayRecipes 7 3 3 42.8%
Zynga 28,211 1,403 849 3.0%
DoSportsEasy 60 0 0 0%

version. The ranked version was then produced with the methodology described in

the same section. For three topics, the produced dictionaries were of 3 layers depth

and for Manga, it was 4 layers deep. Manga was selected for an additional layer over

the other three, as a three-layered dictionary from the seed word “manga” was not

sufficiently big for this attack (and indeed performed poorly – especially compared

to Ignis-10M).

6.6.1 Success over Time

The cracking progress over time against these four data leaks, with the baseline

Ignis-10M dictionary, the contextual ranked dictionaries, and the contextual un-

ranked dictionaries can be seen in Figures 6.13(a) to 6.13(d). As can be seen,

the baseline dictionary, Ignis-10M, has the best overall performance. This does not

come as a surprise – not only because Ignis-10M is larger and more diverse than

any of the contextual dictionaries, but also because even in a data leak stemming

from a car-related forum, not all passwords would be car related. Nonetheless, it

can still be observed that the contextual dictionaries perform well, especially the

ranked dictionary for the JeepForum dataset.
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(a) AxeMusic (Music) (b) JeepForum (Car)

(c) MangaTraders (Manga) (d) Wattpad (Fanfiction)

Figure 6.13: Number of passwords cracked over time by Ignis-10M and the rank and un-
ranked versions of the contextual dictionaries

An interesting fact that can be observed in Figures 6.13(a) to 6.13(d) is that for

AxeMusic and Wattpad, the unranked versions are performing better at the begin-

ning until they are overtaken by the ranked versions. For JeepForum and Manga-

Traders, the ranked and unranked dictionaries have almost identical performance

for the first couple of minutes of the experiment. The reason that the unranked

dictionaries are either having a similar performance or outperforming the unranked

dictionaries at the beginning of the experiment could be that even without ranking,

the first entries in the unranked dictionaries are those directly linked from the seed
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Table 6.20: Total number of passwords found. The R Excl. column contains passwords
found only by ranked dictionaries, The U Excl. column contains passwords found only in
unranked dictionaries.

Dataset Ignis-10M R R Excl. U U Excl.

AxeMusic 132,009 106,782 7,773 86,384 2,698
JeepForum 122,061 107,365 6,025 89,001 2,212
Wattpad 4,103,525 3,016,762 268,670 2,367,223 86,267
MangaTraders 352,544 289,573 22,128 231,097 9,635

page, therefore are highly relevant. Soon after, the ranked versions of the dictio-

naries outperform the unranked for all four categories because the ranking helps

promote forward the candidates with closer semantic proximity to the seed word.

Table 6.20 shows the overall number of passwords found by each dictionary and

for each data leak. It can be observed that Ignis-10M and the Music_R (representing

the ranked version of the dictionary created with “music” as the seed word) have

very similar performances, which is a positive outcome considering the size and

variety of real-world passwords in Ignis-10M. The same holds true for Ignis-10M

and Car_R. It is worthy to note that size wise, the dictionaries produced by the seed

words “car” and “music” were the two smallest, as can be seen in Table 4.1. It can

also be observed that in all four categories, the ranked versions have outperformed

the unranked ones, most strikingly in the Wattpad leak – where ranking resulted in

an increase of 27.44% in performance.

Table 6.20 also shows the passwords that have been found exclusively by the

ranked and unranked dictionaries for each topic. This is especially valuable if a com-

bination attack is considered, i.e., where Ignis-10M is first used to target the weaker,

more common passwords and subsequently the targeted contextual dictionary is

employed (or indeed, both ran in parallel across different workstations). In this case,

the improvement offered by the contextual dictionaries over Ignis-10M alone is sig-
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nificant across the board – with once again, the ranked dictionaries outperforming

the unranked ones. This is especially true in the case of Wattpad, there are more

than a quarter of a million of new passwords, exclusively found by Fanfiction_R that

were not found by Ignis-10M. This represents an increase of 6.55%.

Table 6.21: Top 20 password candidates that found the most passwords for each of the four
ranked dictionaries

Music Car Fanfiction Manga

music jeep love qwerty
guitar dog angel sakura
guitaro man password naruto
rock harley qwerty pokemon
longy honda 100 dragon
sunshine 1 1997 manga
piano ford 4ever inuyasha
love s1 bella angel
musical wrangler 1996 sasuke
12 chevy monkey anime
singer car 1995 iloveyou
welcome camaro princess hello
boy mustang kitty pikachu
yamaha er1 alex monkey
song 12 forever shadow
blues dodge nicole chobits
drum bike lover vampire
guitars qwerty girl purple
1 ranger hannah gundam
rockstar hummer soccer akira

The number of passwords found exclusively by the contextual dictionaries leads

to a new and interesting question. Which password candidates in the dictionary

list performed better, i.e., which found the most passwords in their respective data

leaks? Table 6.21 shows the top 20 password candidates that found the most pass-

words by the ranked dictionaries across all four topics. As can be seen, the top

password candidate for Music_R is the word “music” and the rest of the top 5 are
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also words relating to music. In fact, 14 out of the top 20 best performing password

candidates for AxeMusic are music related – something that reinforces the theory

that users pick passwords according to their interests, and also the type of website

the password is aimed for. Similar results can be observed for “car” and “manga”,

with 13 out of 20 password candidates in Car_R being related to cars (this is exclud-

ing “er1”, which represents a non-mainstream concept car model). This also holds

true for MangaTraders with 13 out of the top 20 performing password candidates

being related to manga. For Wattpad, the results are not quite as clear, with many

first names and dates appearing in the top 20 performing candidates – something

which is common in most data leaks [288].

6.6.2 Strength of Found Passwords

Returning to the aforementioned digital forensic triage scenario, if a digital investiga-

tor is looking to crack the password of an encrypted device belonging to a suspect in

a timely manner, looking at the number of passwords cracked per dictionary attack

might not be a sufficiently accurate metric. Ignis-10M, since it is compiled of some

of the most popular passwords from several data leaks, is assumed to do well with

common, popular passwords. But if the holder of the encrypted device is someone

more tech-savvy, reason states that their password might not be one to be found on

these popular password lists.

In a triage situation, it is therefore important to take into account the difficulty

of the passwords that each dictionary attack successfully cracked. To determine

this, the password strength meter zxcvbn was employed again. As mentioned pre-

viously, zxcvbn classifies passwords according to their strength and places them in

five classes, ranging from the easiest to crack (Class 0) to the hardest (Class 4).

This classification for each of the four data leaks with Ignis-10M and the ranked and

unranked dictionaries are shown in Figure 6.14.
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(a) AxeMusic (Music) (b) JeepForum (Car)

(c) MangaTraders (Manga) (d) Wattpad (Fanfiction)

Figure 6.14: Strength of passwords cracked by Ignis-10M and the rank and unranked ver-
sions of the contextual dictionaries

As can be seen in Figures 6.14(a) to 6.14(d), most of the passwords have been

assigned to Class 1 – with Class 2 being the second most common. It is generally

assumed that the passwords up to Class 2 are easier to crack, and most current

password cracking methods would be able to crack them [4]. Therefore, the focus is

mostly on the passwords belonging to Class 3 and Class 4.

Tables 6.22 and 6.23 show the passwords of Class 3 and Class 4 respectively,

which were cracked by Ignis-10M, the ranked, and the unranked context-based dic-

tionaries. It can be observed that once again, the ranked dictionaries have a better
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Table 6.22: Class 3 passwords classified using zxcvbn for Ignis-10M, ranked (R) and un-
ranked (U) dictionaries. The columns R Excl. and U Excl. represent the Class 3 passwords
found exclusively by the R and U dictionaries.

Ignis-10M R U R Excl. U Excl.

AxeMusic 7,879 4,003 1,490 1,645 393
JeepForum 2,039 1,305 491 566 140

Wattpad 313,142 137,396 52,882 49,742 10,400
MangaTraders 21,293 11,739 5,981 4,357 1,645

Table 6.23: Class 4 passwords classified using zxcvbn for Ignis, ranked (R) and unranked
(U) dictionaries. The columns R Excl. and U Excl. represent the Class 4 passwords found
exclusively by the R and U dictionaries.

Ignis-10M R U R Excl. U Excl.

AxeMusic 551 380 118 239 66
JeepForum 65 53 15 34 12

Wattpad 27,005 9,346 2,628 5,415 1,128
MangaTraders 2,389 1,245 574 581 240

performance compared to the unranked ones across all four datasets. In fact, in

every case except Class 3 for MangaTraders and Wattpad, the ranked dictionaries

have managed to find more exclusive passwords (R Excl. column) than the un-

ranked have managed overall (U column).

When comparing the ranked dictionaries to Ignis-10M, it is important to notice

that the number of passwords found exclusively by the ranked dictionaries, i.e., not

found using Ignis-10M, is quite high. In fact, for Class 3, the increase in password

cracking success rises 20.9%, 27.8%, 15.9% and 20.5% for AxeMusic, JeepForum,

Wattpad, and MangaTraders respectively.

Focusing on Class 4, which contains the strongest passwords of each dataset,

on average 50% of those found by the ranked dictionaries are not found using Ignis-
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10M. In a combination attack, i.e., combining the results of the ranked dictionaries

and the corresponding results from Ignis-10M, the improvement is 43.4%, 52.3%,

20% and 24.3% for AxeMusic, JeepForum, Wattpad, and Manga Traders respec-

tively.

6.7 Summary of Results

The experiments in this chapter aim to showcase the role of contextual information

in password cracking and the merit of using the contextual approach for this pur-

pose. The results of Section 6.2 show that there is context inherently in passwords.

Even in a big and broad dataset as HIBP, there are trends that users follow when

they choose their passwords that suggest the role of context and the importance of

leveraging it for more targeted attacks.The results of Section 6.3 show a preliminary

experiment where leaked lists of passwords from specific communities were used as

dictionaries to crack passwords of other thematically close communities. These are

preliminary results that show the improvement of using wordlists that are targeted

towards the passwords(s) that are to be cracked, and encourage the idea of creating

bespoke dictionary lists for this purpose. Sections 6.4 and 6.5 show the results of

these bespoke dictionary lists, first with a smaller experiment and then with the one

of a larger scale with ten different datasets from different communities used for eval-

uation. These results show the significant increase in cracked passwords with the

contextual approach and especially the improvement over Class 3 and Class 4 pass-

words which are the hardest to crack. Finally, Section 6.6 shows the improvement of

using NLP techniques to rank the bespoke dictionary lists by how close they are the-

matically to the password(s) to be cracked. Indeed, in this section some of the best

numbers of cracked passwords in Class 3 and Class 4 were achieved. The number

of passwords found exclusively by the ranked approach and not by Ignis constitute
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an improvement of even 50% in some cases. The results of Table 6.21 solidify even

more why this approach works - the password candidates that performed best were

in majority directly related to the seed word.
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Chapter 7

Discussion and Analysis

This chapter focused on presenting the results of the evaluation of the methodology

outlined in Chapter 4, with the aim of answering the research questions posed at the

start of this thesis about the role of context in password selection and the ways it can

be leveraged on behalf of the password cracker. Section 7.3 looks back at the alter-

native approaches in password cracking dictionary generation and assesses where

the contextual approach fits. The rest of this chapter explores these research ques-

tions sequentially and discusses how the results presented address each research

question.

7.1 Reviewing the Research Questions

7.1.1 Research Question 1

RQ1: What impact does a context-based password cracking approach have on the

likelihood of success during a digital investigation?

The analysis of the HIBP dataset decisively shows that clear trends of contextu-

alisation can be found in passwords. As this analysis shows, users use passwords

they easily remember, something that makes them weak and easier to guess. The
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515 million reversed-engineered passwords from the HIBP dataset produced 3 times

as many password fragments, which shows that there is merit in this approach and,

in fact, a deeper analysis of the fragments is warranted. The new insights provided

by password fragments can help inform not only password cracking but also on the

other side of the equation, password policy creation.

The analysis of the password masks highlighted the most common combinations

of character categories. This can serve to: 1) inform password policies; and 2) give

insight into the most popular construction processes users follow.

The strength analysis on this password dataset shows that the majority of pass-

words remain weak, and easily recovered with an exhaustive search. Passwords of

class 4, which were the strongest, would still be susceptible to a brute force attack

considering a fast hash function. On the other hand, it was demonstrated that with a

slow hash function, it would be a lot more difficult and costly. Therefore, special at-

tention should be paid to the way the passwords are stored, because in many cases

the hash function will be the only obstacle in the way of an attacker.

Looking at the contextual information that can be found through the classifica-

tion of the fragments, attention should be paid to how it can be translated to viable

password candidates. Such information is often available through classical means

of investigation in the case of law enforcement, and could tilt the balance in their

favour. In the case of an attacker targeting an individual, this type of information

may be found by unlawful means or in some cases by what the victims themselves

have shared online. This is why it is especially prudent to be mindful of an attacker’s

targeted approach.

Taking the hunt to find contextual information in passwords a step further, the

focus shifted to datasets stemming from specific communities such as Manga and

video games instead of a bigger, more generic dataset like HIBP. Throughout this

thesis, the community scenario, as described in Section 4.2.1, is used for the eval-
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uation, along with RockYou (a generic dictionary from data breaches). Two other

dictionaries, focusing on Manga and video games, have also been used during eval-

uation.

The question that arises from the preliminary results is, what do these two

datasets have that RockYou does not? Both MangaFox and BoostBot stem from

online leaks and there is no processing, augmentation or other customisation done

to them. Furthermore, their size is small compared to the 14 million of RockYou

passwords (32 million considering repetitions). The one advantage these datasets

have, is that they are thematically closer to the target datasets.

Overall, the performances between the three wordlists are comparable when

considering the JtR approach and close when considering OMEN, both of which

are Markov-based models. The results are poor when it comes to PRINCE (for

MangaFox and BoostBot) but a pre-processing of the wordlist to make a better us-

age of it could modify those results. PCFG works better than the other processes,

but with a clear advantage for RockYou. This is probably thanks to the difference of

size, giving more chances for PCFG to infer and reuse the grammar.

Both MangaFox and BoostBot have a better ratio of passwords found in Class 3

for Minecraft, and in a less impressive manner for Class 4 for MangaTraders. The

found passwords are significantly fewer for Axemusic and JeepForum, probably due

to a lesser proximity of the communities. Surprisingly, MangaFox performs better

than BoostBot on Minecraft and BoostBot better on MangaTraders than MangaFox,

while the other way around would have been expected. Still, the communities of

Manga and video games are more closely associated with each other than Music

and Cars, so this close proximity might be the explanation. Finally, while MangaFox

performs poorly on Class 3 of JeepForum, it performs relatively well, even if the

numbers are small, on Class 4.

These results showcase that even against a generic, much larger dataset like
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RockYou, using a smaller dictionary list that is thematically closer to the topic of the

community can yield comparable results and offers the first proof that context can

indeed impact password cracking, and it can be leveraged for this reason.

7.1.2 Research Question 2

RQ2: How can a context-based password cracking dictionary be generated, be-

spoke to the interests of an individual suspect or a group of suspects?

Humans are creatures of habit. When choosing passwords, they tend to re-

peat words and patterns and select words that are familiar and meaningful to them.

Their passwords naturally tend to make sense for them so that they can remem-

ber them more easily. Even in the case of users choosing random words, e.g., a

passphrase of four random dictionary words, the mechanism they use for password

selection does provide insight. Of course, not everyone is like this. Many people

nowadays use password managers and let the tool generate random, therefore se-

cure passwords, on their behalf. Therefore, neither typical dictionary attacks nor

context-based approaches would prove effective against them.

Nevertheless, there is merit to the proposed targeted dictionary approach and

the method that was adopted to create these dictionaries showed very positive re-

sults. The experiments with the generated contextual dictionaries demonstrate that,

conclusively, context matters. In the case where an investigator has information

about the individual(s) that are targeted in a case, this approach should be consid-

ered. If there is only a single suspect and there is a need to act fast, it may prove

more useful to use the proposed targeted approach first. The metrics that were in-

troduced in 4.7 can be used alone or combined on a case-by-case scenario, in order

to create the appropriate contextual dictionary list.

The insights provided by the experiments already point to the most successful
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techniques that can be adopted, but it of course depends on the specifics of each

case. For example, the poor performance of Sports_3 compared to the other nine

L_3 contextual dictionaries suggests that more layers or a different seed word (one

with a more detailed Wikipedia page, hence more links) should be considered to

reach a sufficient starting size for the contextual dictionary. Another thing to be

taken into consideration is the password cracking tool that is selected. For example,

with tools like PCFG where the dataset is used for training to create the grammar,

a generated dataset will have a disadvantage. One way to possibly improve the

results could be to reuse the grammar trained from RockYou or Ignis-10M, but then

feed that special list with the content of the generated dataset.

As mentioned, RockYou and Ignis-10M are significantly larger than any gener-

ated dictionary can be - unless the depth is chosen to be more than 5 or 6 layers,

which is something that would defy the purpose of context as the dictionary would

be too broad, and it would be too time-consuming to generate it. Therefore, the

difference in size between RockYou and Ignis-10M and the generated dictionaries

is that the first two will take longer to execute. A smaller, more focused, bespoke

dictionary, which prioritizes the most likely password candidates first, might be the

best option to choose in the first instance. The advantage of it, is that it will take less

time to run it, if time is the metric of interest, or more permutations of the password

candidates will be tested. The performance of the contextual generated dictionar-

ies already has shown a clear benefit, in finding a significant number of strength 4

passwords that were not found by the generic approaches. If a strong password is

the target, this approach should be considered.

Of course, if the aim is to crack more than one password, other factors need

to be considered too, including how customisable the list should be. Is it better to

start with one or more seed words? Is the number of passwords cracked enough

to determine success, or is there a need for other, more sophisticated metrics, i.e.,
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the number of passwords cracked in a specific amount of time or the strength of

the cracked passwords? The quality of a dictionary can be measured in several

different ways depending on the desired use case, all of which can be established

using PCWQ. An advantage of this process is that the customisation is easily done,

i.e., the addition of more seed words, the re-definition of size or attack duration, etc.

In a community-based approach, a bespoke, targeted dictionary can provide a

significant increase in the number of found passwords and can be adopted ahead

or alongside the baseline in the password cracking pipeline. Of course, one sce-

nario that could not be tested as part of this thesis is the one of the single suspect

and their seized encrypted device(s). In such a case, a bespoke dictionary whose

parameters can be tweaked and tailored to the suspect can be created with ease

using the proposed methodology and procedure as described in this thesis. This

would result in the investigator easily having the means to produce a custom dic-

tionary, or dictionaries, for a specific case. When racing against the clock or when

an encrypted device presents the largest roadblock in an ongoing case, contextual

dictionaries tailored to the suspect at hand could prove invaluable to progressing an

investigation.

While instinctively the password cracking community felt that context matters

in password cracking, this is the first time that this suspicion has been exploited

to create bespoke, context-based dictionaries. This work is the first in literature

that categorically proves that context matters in the password cracking process and

opens up a whole host of further avenues for exploration, as discussed later in future

work.

7.1.3 Research Question 3

RQ3: How can password candidates be contextually prioritised in a dictionary, and

what impact does this prioritisation have?
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The results of Section 6.6 show the added value of considering context in pass-

word cracking. The number of passwords found exclusively by the unranked and es-

pecially the ranked versions of the contextual dictionaries adds a substantial value to

a combination password cracking approach with existing off-the-shelf dictionaries,

e.g., Ignis-10M. When cracking the passwords of any large community, a generic

dictionary will always be at an advantage. This is due to a significant proportion

of users choosing passwords that are not thematically close to the content of the

website the password is for, and many will use passwords that either have some

personal meaning or without any contextual meaning at all.

In the presented experiments on data leaks from communities focused on spe-

cific topics, it is clear that the link between the password and the purpose of the

community is sufficiently present. This can be seen clearly in Table 6.21, where the

majority of the top performing password candidates were thematically close to the

seed word/focus of the community.

Furthermore, the process to optimise and rank the contextual dictionaries has

proved fruitful, with the ranked dictionaries outperforming the unranked ones across

the board. This is especially significant in triage-like situations during a digital inves-

tigation, where it is important to gain access to an encrypted device as quickly as

possible. Ranking the dictionary by how similar the password candidates are to the

seed word means that those passwords (and their corresponding permutations with

mangling rules) will be checked first. In a timed attack, as has been the case with

the experiments here, this proves extremely important.

Of course, depending on the specific situation, a combination of one or more

approaches might be needed. For example, depending on the hash function, an

exhaustive search up to 8 digits might be fast enough to be considered first, followed

by a contextual dictionary attack if the “low-hanging fruit approach” does not prove

so fruitful.

176



7.2. BENEFITS AND LIMITATIONS

7.2 Benefits and Limitations

As with any approach, there are advantages and limitations. One of the advantages

of the contextual approach is that it is highly customisable to each suspect. A dictio-

nary can be made with any starting seed word (as long as there exists a Wikipedia

article about it). But manually creating customised dictionaries for each case would

be a very time-consuming process. To overcome this, having some established lists

of commonly encountered topics and interests could result in an optimised start to

the password guessing process. This practically means that an investigator could

easily have dictionaries about specific or niche topics at their disposal easily. These

dictionaries can also be highly customisable – the depth of search can be set by

the investigator, and entries that are deemed as contextually distant to the seed

word can be disregarded by tweaking the threshold for the similarity score. Further-

more, dictionaries stemming from different seed words can be combined to create a

combination dictionary.

The importance of these dictionaries hinges on not only the fact that users tend

to form passwords that are meaningful to them, therefore memorable, but also the

highly likely assumption that if a suspect is tech-savvy enough to use encryption

on their devices, they are also likely to not use easy-to-guess passwords. This is

where the contextual approach could make a difference, since the passwords that

it cracked - that the generic approaches did not in the experiments - were majorly

related to the seed word of the dictionary and focus of the community. Further than

that, the performance of the contextual dictionaries with strength 4 passwords was

impressive, considering that on average 50% of the strength 4 passwords found by

the ranked dictionaries are not found using Ignis-10M. These two elements could be

the decisive factor in the outcome of a case against a tech-savvy suspect.

Of course, as with every approach, there are limitations to its usability. In a

scenario where the sheer number of passwords found is the most important pa-

177



7.2. BENEFITS AND LIMITATIONS

rameter and the runtime and/or strength of the passwords found is not important,

generic dictionaries based on existing password leaks will most likely perform bet-

ter. Nonetheless, a combination approach with the technique described as part of

this work will likely improve the chances of overall success further.

Furthermore, as already mentioned in Chapter 4, contextual dictionaries, unlike

common password lists such as Ignis-10M and RockYou, are lists of words not lists

of passwords. Therefore, the performance of the contextual dictionary cannot be

judged against the generic approaches, as they do not function in the same way

and their end goal is different.

The use of mangling rules can help remedy to an extent the fact that the con-

textual dictionaries are not human generated and therefore do not contain this im-

portant information. Still, it is safe to say that many words that can have a high

similarity score to the seed word and therefore be placed high during the ranking

are not words that would be used to create a password. One such example is the

word “series”. Using a contextual dictionary with phrases and the proposed ranking

approach, “Manga Series” has a similarity score of 1 compared to “Manga” (1 for

“Manga” and 0.54 for “Series”), which would place it at the top of the list. But in

reality, the phrase “Manga Series” is not as likely to be a password as the names of

actual manga series, as evidenced in Table 6.21.

Finally, this approach, as all dictionary attacks, would not work on suspects that

use password managers or randomise their passwords in a way that does not in-

clude dictionary words. These types of passwords would not easily succumb to any

of the password cracking techniques that are available at this time.
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7.3 Comparison with Alternative Approaches

When discussing the results of this work, the position where this contextual ap-

proach fits in the grand scheme of password cracking methods and tools must be

considered. Unlike the artificial intelligence approaches that require large lists of

real-world passwords from data breaches, the proposed contextual approach does

not require any data from breaches. As the contextual dictionaries are generated

based on the seed word(s), as long as there is a corresponding Wikipedia entry, this

practically means a dictionary list can be generated for any topic.

This is something novel and something that is not achievable by any other

method currently available. The current state-of-the-art methods, be it rule-based,

artificial intelligence-based, or those based on Markov/statistical models focus on

what a typical password looks like. These methods use real human generated pass-

words as training data for models to create new password candidates that look like

them, i.e., that contain similar components and patterns as real passwords. Of

course, this is a valid approach to generating dictionaries, but the key difference be-

tween these and the contextual-based approach is that the latter considers not what

the password looks like but its semantic meaning. The context-based approach can

generate dictionary lists on topics of interest to a suspect or group of suspects, or

indeed on topics in the future that do not currently exist, e.g., a new TV series, new

books, new movies, etc.

There have been several cases where researchers have hinted at the role of

context in password selection in the past. Veras et al. [197] classified the RockYou

dictionary entries with the help of Wordnet and used PCFG to create probabilities

for these semantic patterns, as well as the structural ones of classic PCFG. Li et al.

[204] also enriched PCFG by adding a few more categories besides letters, digits

and symbols such as birthdate or email patterns. But the use of context in these

cases remains focused on semantic word sequences or looking for some very com-
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mon patterns, e.g., the inclusion of the email address in the password. The method-

ology presented as part of this thesis is the first work that explores how to crack

passwords exploiting context in a targeted approach and by creating new, bespoke

dictionaries for each case.

Looking at some of the results in the previous chapter, where the contextual

approach is pitted against RockYou or Ignis-10M, this approach could work in com-

bination or, in certain cases, before existing approaches – especially when the triage

scenario is considered. In general, the combination approach proves greater than

the sum of its parts, mainly because of the success of the contextual dictionary

method in generating passwords that the other approaches cannot.

Dictionary lists have been the most important tool for a password cracker, who

then, according to the problem at hand, utilise them with different password crack-

ing tools and methods. Up to today, for the conventional (but also best performing)

approaches, a dictionary list is a prerequisite, but these approaches focus on what

to do with a dictionary list after they obtain it, and data leak password lists are com-

monly used. In many cases, the dictionary lists in use are a combination from dif-

ferent data leaks, sorted by order of popularity, an example of which is Ignis. These

lists are then fed to the tool of choice, be it a PCFG that uses the dictionary list

to calculate probabilities or a GAN that uses it to create new password candidates.

The clear improvement of the contextual approach is that it allows for bespoke dic-

tionary lists that can take the place of (or even be combined with) existing lists from

data leaks, allowing for complete control and targeted password cracking that can

be tailored to each specific case.

Machine learning approaches and GANs aim to use existing data leaks as input

to generate new similar password candidate strings that look like that input – most

likely motivated by trying to reduce the amount of password candidate mangling

needed. One drawback of these methods is that, in general, they require a greater
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number of guesses to match the results of rule generated approaches. For example,

in order to achieve a similar number of cracked passwords as the other tools that

were tested, PassGAN needed significantly more password guesses, and in some

cases this was an order of magnitude more [289]. This would not be an issue in

an offline attack where time is not of the essence, but it could be prohibitive in a

triage scenario. Furthermore, artificial intelligence-based approaches require an

input dictionary (which in the majority of cases to date, RockYou from 2009 is still

used) so they could still benefit from contextual dictionaries as input – something

that will be further expanded upon in the future work outlined in Section 8.2.

The performance of the proposed methodology should also be considered. Ma-

chine learning-based approaches are mostly candidate generation tools that must

be piped to a password cracker software, such as Hashcat or JtR, to conduct a

password search. The pace at which the passwords must to be generated should

be high enough to feed the cracker – otherwise the generation becomes the bottle-

neck of the password cracking process. This is directly linked to the targeted hash

function and how fast the cracker can evaluate passwords for this function. As the

crackers nowadays are well optimised and the available computing resources much

larger, these ML-based generation tools often have trouble reaching a sufficiently

fast pace. The generation could be sustained by the use of mangling rules on the

cracking side, but it is somehow going against the idea of ML methods, of gener-

ating better candidates in the first place without requiring any additional step. The

methodology described in this manuscript produces a dictionary that is meant to be

used directly as input of the cracker, together with mangling rules. This attack, to-

gether with exhaustive search, is the fastest combination for maximising the usage

of the available hardware. While it would not make a difference for slow hash func-

tions, e.g., Veracrypt or scrypt, it can be a game changer for both medium-speed,

e.g, SHA-256 or RIPEMD-160, or fast hash functions, e.g., MD5 or NTLM.
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Chapter 8

Conclusion & Future Work

8.1 Conclusion

Despite known security concerns, password-based authentication remains the most

widely used method of authentication. A 2021 study showed that the online identity

of almost one in three Americans was stolen in the last year alone, and another

13% were uncertain whether their credentials were part of a data breach [290]. In

a spirit of strengthening security, password policies are nowadays more restrictive

and require users to select stronger passwords. Additionally, salting the passwords

increases the complexity of the password cracking process, as each salt must be

considered sequentially. Salting renders the commonly used rainbow table-based

password cracking approaches obsolete.

This thesis firstly looks at the role of context in existing real-world, human-

generated passwords, stemming from data breaches. The insights gained from

studying lists like HIBP, which consists of various data breaches of the last few

years, are important from both an offensive and a defensive perspective. From an

offensive perspective because they can inform password cracking attacks and give

LEA the necessary knowledge to create tailored attacks, something that could be

the deciding factor in an investigation. From a defensive perspective, this knowledge
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that is extracted from the statistical analysis and the fragment analysis of the con-

stituent pieces of the passwords can benefit password policies in order to ensure

the safety of the passwords that users choose.

The PCWQ framework that is developed as part of this thesis provides a new

methodology to assess and compare wordlists. It highlights that wordlists behave

differently depending on the context of the target dataset, and it can therefore be

used to develop and assess wordlist generation processes in several scenarios.

Focusing on the different classes of strength is also useful to evaluate the quality of

wordlists to retrieve stronger passwords.

Evaluating a dictionary list is a complex topic and there are many parameters to

take into consideration. For example, a larger dictionary list can achieve a higher

percentage of found passwords, but in twice as much time as a smaller list. Alter-

natively, two lists can have the same size, a similar run-time, and achieve similar

success rates, but one of them can find passwords of higher difficulty. Therefore,

this trade-off should be considered on a case-by-case scenario.

For an offline attack where the percentage of success is important, a bigger,

more thorough dictionary list might be chosen and paired up with an extensive set

of rules for permutations. If time is of the essence, a smaller dictionary list might be

more beneficial. If the target is a single password, a combination of brute-forcing the

smaller passwords alongside a contextual dictionary list focusing on harder pass-

words might be an optimal strategy. The dictionary list, or combination thereof,

should be decided depending on the parameters of the specific case.

The evaluation of wordlists with the framework highlighted that the size and the

composition of the wordlists have a strong impact on some processes, e.g., PRINCE

and PCFG, while it is less visible for some other processes. Therefore, when a gen-

erated wordlist is considered, dedicated pre-processing is needed to better prepare

the wordlists according to which password cracking tool has been selected. There-
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fore, it is clear that not one metric can stand alone, evaluate a wordlist thoroughly

and assign a score that can predict how well that wordlist will do against a target. A

compound metric is needed for the evaluation, and even then, there should be room

left for its parameterisation for each attack scenario.

The primary contribution described in this thesis is a novel framework for creat-

ing new, custom dictionary lists for any topic of interest that may be required, ones

that can be useful to a digital investigator for cracking the password of an encrypted

device. This methodology leverages natural language processing and the power of

structured information found on Wikipedia (and DBPedia) to create bespoke dictio-

nary lists. This can provide the blueprint for easily creating customized dictionary

lists for any topic, combine them, tailor them according to how deep and compre-

hensive they need to be, and personalize them to the needs of each investigation.

The entries are ranked in descending order of similarity to the seed word that was

used to create the dictionary, with the aim to try the most likely password candidates

first. This is especially useful when the timely access to an encrypted device is of

the essence, as the candidates with the highest similarity score will be checked first.

The experiments conducted in this thesis provide a definite proof of the value

of considering contextual information in password cracking. Humans are creatures

of habit, and that is no different in their password selection process – where they

often choose familiar words that are more easily remembered. This information can

be leveraged in an investigation, and the ability to exploit it could prove invaluable

during an investigation.

The experiments have demonstrated that often people choose passwords re-

lated to the topic of the website/system that the password is for, or that are the-

matically close to that topic. Therefore, using a custom dictionary list can offer a

significant advantage to the cracking process and ultimately result in higher suc-

cess rates compared to using a generic dictionary alone. The conducted exper-
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iments show that the use of the proposed approach, in conjunction with existing

approaches, results in up to 50% additional passwords being cracked over existing

approaches alone in certain circumstances when considering the final experiments

with the ranked, optimised contextual dictionary lists. This increased likelihood of

cracking a particular user’s password could mean the difference between a digital

investigation progressing or being stuck in its tracks.

Of course, a contextual dictionary based around a single seed word cannot com-

pete on equal footing with a 20 to 300 times larger and more well-rounded dictionary

like Ignis-10M when the objective is to crack as many passwords as possible. This

means that when no information is known about the target or the goal is to gain

access to a system by cracking the password of any user and not a specific one,

using a dictionary like Ignis-10M would provide a higher chance of success.

If the usage scenario surrounds a single case and/or a single password and

information can be determined about its owner and their interested, then the con-

textual approach can be utilised. This would make even more sense, considering

that in digital cases, suspects might be more likely to try harder to conceal their

tracks and therefore would choose their password with more prudence.

The most notable improvement when it comes to the results of the contextual dic-

tionaries is the number of extra passwords cracked with the contextual dictionaries,

which offer a significant improvement when combined with the generic approach.

The extra passwords that were cracked not only lend credit to a combination ap-

proach, but also showcase further that a smaller dictionary built around one seed

word related to the target data leak can indeed boost the number of cracked pass-

words significantly.
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8.1.1 Implications of This Work

The findings of this work have the following implications in the domain of password

cracking and the protection of user authentication.

Role of the Contextual Dictionary Approach in the Digital Forensic Investiga-

tion Process

The contextual approach, as demonstrated by the results of the experiments in

Chapter 6 can, depending on the case, stand alone, but performs best in conjunction

with other more generic approaches. For the experiments conducted in this thesis,

it was not possible to test the individual scenario where information about a specific

target could be accumulated and used to create a bespoke dictionary, tailored to

them. This is something that can easily be done by LEA and certainly one avenue

that can be explored to gain insight of how well the contextual approach can perform

in real digital investigation cases.

Investigators do not have to know anything about the desired topic to be able to

build a custom dictionary list of the most important words about that topic. Addition-

ally, this dictionary generation utility helps investigators keep up with current trends

in password cracking and easily create new dictionary lists to accommodate them.

This approach can be further enhanced with knowledge of previous passwords

that can provide insight into the ways the particular suspect picks their password as

well as any other information about them that could be useful, e.g., names and dates

of births of relatives and friends, information found on their social media accounts

about their likes and interests and who they correspond with. These could be used to

further tailor the contextual dictionary to the suspect. In terms of optimally applying

this approach in real world scenarios, one focus for future work is to create a bank

of precomputed seed word lists generated on common and popular topics so that

they do not need to be regenerated whenever re-encountered.
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Finally, the contextual approach (alone or combined with other password crack-

ing attacks) would fit in triage in a time-critical case, when faced with an encrypted

device. Depending on the parameters of the case, the contextual dictionary could

be run first if for example the suspect is technologically savvy or second if the in-

vestigator would like to first eliminate easy passwords with a brute force attack. In a

non-triage situation, the contextual approach can be part of the investigator’s arse-

nal if other, more conventional methods fail.

Password Cracking

As outlined in Chapter 6, the use of these contextual dictionaries can in some cases

offer competing results with much larger and variant dictionary lists, such as Ignis-

10M, although this is not their purpose. Contextual dictionaries can offer a significant

increase in found passwords if the generic and contextual approach are combined

with them. The contribution of the contextual dictionaries is particularly important for

Class 3 and Class 4 passwords, where the increase in found passwords by adding

the ranked contextual dictionary in addition to Ignis-10M resulted in as many as 50%

more passwords found. This is especially significant considering how the size of

the bespoke dictionaries is much smaller to more well-rounded password dictionary

lists.

Informing Password Policies

On the other side of the coin, the information extracted during the course of this

thesis that pinpoint the role of context in password creation can also be used to

inform password policies. Taking the fact that humans contextualise their passwords

to make them more memorable should be taken into account by password policies.

That’s not to say password policies should prevent it, because a balance between

safety and memorability must be achieved.

187



8.2. FUTURE WORK

Looking at contextual information about passwords can be both a friend and a

foe. Context can be leveraged for a targeted attack, but it is also what helps people

memorize and retrieve their passwords. Therefore, in password creation it should be

used in conjunction with other strength parameters like length in a long passphrase.

Password meters are a good friend. They may fail to identify context, but some

of them are good to recognize language. Those still give good insights about the

strength of the resulting password, therefore, they can be used to ascertain that a

password based on contextual information can be both memorable and difficult to

crack.

8.2 Future Work

Based on the findings of this work, several future directions can be identified. They

are described in the following subsections in no particular order.

Refinement of the Contextual Dictionaries

A crucial step in the refinement of the contextual dictionaries is to fine-tune the

sanitisation process for the dictionary words. For example, a link could contain

more than one word. Therefore, tweaking the manner in which these are combined

could result in better password candidates. In the experiments performed as part of

this thesis, even though contextual dictionaries without phrases outperformed those

containing phrases, it is possible that contextual information is going to be lost by

not also keeping phrases together.

For example, in a contextual dictionary with the seed word of “Manga”, “Manof-

Steel” is more likely to be someone’s password than the individual words “man” and

“steel”. At the same time, there are phrase entries that do not warrant further consid-

eration, e.g., the link “List of Manga Series”, which is a Wikipedia display construct
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for storing similar content, but is not a valid candidate phrase by itself. Therefore, a

more robust sanitation process could greatly benefit the success of the contextual

dictionaries. This sanitation process could again be based on NLP, with the similar-

ity of the words within the phrase to each other being taken into account to further

refine the password candidates extracted.

In this vein, the trimming of some branches during the dictionary generation

process can reinvigorate the progress when relevancy declines. For example, during

the exploration of layer 3, some candidates might be already too thematically distant

from the seed word. If these candidates can be disregarded at this stage, they could

give way to an exploration of deeper relevant layers rather than shallower irrelevant

entries. As a result, the end dictionary may be the same length as layer 3, but would

contain more relevant entries.

Enhancement of the Contextual Dictionaries

As part of future work, more consideration will be given into enhancing the generated

dictionaries. While dictionaries of 3 layers provided the best results in 9 out of 10

experiments, it was not the case for the 10th. In a scenario where the bespoke

dictionary is too short, additional seed words could be provided, and the resultant

dictionaries could be merged, additional layers could be used, or a combination

thereof. Moreover, these dictionaries are exactly that – dictionaries, whereas Ignis-

10M contains real-world passwords. It is therefore important to look into ways of

transforming the dictionaries into password candidates, with the help of well refined

mangling rules, that could better imitate the behaviour of users when they choose

their password.

Finally, two other avenues to be explored for optimising the results of the can-

didate generation process are searching backwards during the link exploration pro-

cess and ranking the dictionary entries. For example, in the case that the seed
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word is “Manga”, backwards searching would include Layer -1, i.e., all the pages

on Wikipedia that link to Manga. This could provide a substantial addition of very

relevant password candidates. As part of future work, a system for keeping track of

how many times each entry was found could help indicate how relevant it is to the

seed word and be used for ranking the resultant list.

In fact, more attention should be given into filtering the password candidates

such that candidates with high similarity to the seed word, but low probability of

being used as passwords, can be filtered out. A potential way to do this would be to

look at the bidirectional distance between these two words. For example, is “Series”

as close to “Manga” as “Manga” is to “Series”? Or, is the number of words that are

thematically closer to “Manga” than “Series” the same for “Series” to “Manga”? To

this end, looking back at Layer n-1 might also prove useful, as it will contain links

that link back to “Manga”.

New Sources of Information

Wikipedia (and DBpedia) provide a great way to assemble a contextual dictionary

as the database of entries on Wikipedia is immense and covers a vast amount of

topics, so much so that it would be very difficult not to be able to find a starting article

to use as a seed word for almost any topic. Furthermore, the tree like structure

of Wikipedia ensures that topics and concepts that are semantically close to that

starting seed will be featured in the contextual dictionary. But, not everything is

included on Wikipedia, in fact there are many cases where information that might be

relevant about a topic is not included there. Usually, this type of information would

include current trends, idioms and pop culture.

Fortunately, there are many avenues to explore to further enriching the process

of creating context-based dictionaries. Other sources of contextual information that

can be considered include Wiki articles, forums, and social media. For example, a
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Twitter hashtag could be a good starting point for creating a dictionary list containing

what people have to say on a specific topic right now. It could also provide insight

into the slang, colloquialisms, and common words or phrases associated with each

keyword.

Adding Context to Other Dictionary Generation Approaches

The combination of current approaches with the contextual dictionary approach can

be another avenue to explore in future work. Current state-of-the-art approaches to

password cracking, whether they are rule-based, probabilistic or machine learning-

based, they require the use of a dictionary at some point, either a leaked list they

feed into a password cracking tool or as input for training to create a new dictionary

list based on it. The go-to approach to this is the use of leaked dictionary lists

from data breaches. In fact, RockYou remains one of the most popular lists for this

purpose even today.

Combining the bespoke, contextual approach as input for training in some of the

state-of-the-art AI and ML approaches could serve to create new password candi-

dates that could not be recreated using the traditional leaked list approach.
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Appendix A

List of Abbreviations

The following describes the significance of various acronyms and terms used

throughout this thesis.

Acronyms

2FA Two-Factor Authentication.

ACPO Association of Chief Police Officers.

AI Artificial Intelligence.

API Application Programming Interface.

ATM Automated Teller Machine.

CCTV Close-Circuit Television.

CFFTPM Computer Forensics Field Triage Process Model.

CPU Central Processing Unit.

233



Acronyms

DFINT Digital Forensic Intelligence.

DoS Denial of Service.

DPPP Dynamic Personalised Password Policy.

DRbSI Data Reduction by Selective Imaging.

FBI Federal Bureau of Investigation.

FPGA Field Programmable Gate Array.

GAN Generative Adversarial Network.

GCNN Gated Convolutional Neural Network.

GDPR General Data Protection Regulation.

GPU Graphic Processing Unit.

HIBP Have I Been Pwned.

HIBP_v5 Have I Been Pwned version 5.

HPC High Performance Computing.

HUMINT Human intelligence.

IoT Internet of Things.

IT Information Technology.

JtR John the Ripper.

LEA Law Enforcement Agency.
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Acronyms

LPSE Lightweight Password-Strength Estimation Method.

LSTM Long Short-Term Memory.

MD5 Message-Digest Algorithm.

ML Machine Learning.

MPI Message Passing Interface.

NATO North Atlantic Treaty Organization.

NIST National Institute of Standards and Technology.

NLP Natural Language Processing.

NTLM New Technology LAN Manager.

OMEN Ordered Markov Enumerator.

OS Operating System.

OSINT Open Source Intelligence.

OTP One Time Password.

OWASP Open Web Application Security Project.

PACK Password Analysis and Cracking Kit.

PCFG Probabilistic Context-Free Grammar.

PCWQ Password Cracking Wordlist Quality.

PGF Password Guessing Framework.
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Acronyms

PII Personally Identifiable Information.

PIN Personal Identification Number.

PRINCE PRobability INfinite Chained Elements.

RDF Resource Description Framework.

RIPEND RACE Integrity Primitives Evaluation Message Digest.

SHA Secure Hash Algorithms.

SNA Social Network Analysis.

SOCMINT Social Media Intelligence.

SSH Secure Shell.

SSO Single-Sign-On.

TMTO Time-Memory Trade-Off.

UK United Kingdom.

VAE Variational Auto-Encoder.

VoIP Voice over IP.

VPN Virtual Private Network.

WEP Wired Equivalent Privacy.

WPA Wi-Fi Protected Access.

WPS Wi-Fi Protected Setup.

WWW World Wide Web.
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