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Abstract

The ever-increasing workload of digital forensic labs raises concerns about law enforcement’s ability to conduct both cyber-related
and non-cyber-related investigations promptly. Consequently, this article explores the potential and usefulness of integrating
Large Language Models (LLMs) into digital forensic investigations to address challenges such as bias, explainability, censor-
ship, resource-intensive infrastructure, and ethical and legal considerations. A comprehensive literature review is carried out,
encompassing existing digital forensic models, tools, LLMs, deep learning techniques, and the use of LLMs in investigations. The
review identifies current challenges within existing digital forensic processes and explores both the obstacles and the possibilities
of incorporating LLMs. In conclusion, the study states that the adoption of LLMs in digital forensics, with appropriate constraints,
has the potential to improve investigation efficiency, improve traceability, and alleviate the technical and judicial barriers faced by
law enforcement entities.
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1. Introduction

With the widespread growth of information and communi-
cation technology (ICT) and information systems, cybercrimes
have seen a significant increase in recent years [1]1. As a fur-
ther compounding factor, the number of “traditional” police in-
vestigations that include digital evidence is also increasing [2].
Addressing and investigating this volume of cases presents sub-
stantial challenges.

Generative AI (GenAI) and Large Language Models
(LLMs) have become prominent topics of global discussion,
prompting researchers to intensify their investigations by
leveraging the capabilities of LLMs. The usage of LLMs
within the scientific community experienced a rapid surge after
2022, notably with the advent of OpenAI’s ChatGPT platform.
In a relatively short period of time, this topic has attracted the
attention of academia, industry, and the research community
at large [3]. Simultaneously, researchers are exploring the
potential of LLMs in various domains and assessing their
impact on the future of science and society. This inquiry
also includes an examination of the potential harmfulness
associated with the deployment of LLMs [4, 5]. In other words,
the use of LLMs in various tasks can be a double-edged sword,
necessitating careful consideration depending on the specific
situations and contexts.

Given the rapidly evolving landscape of LLMs, it is pru-
dent to look into various types and their unique capabilities. A

1https://go.crowdstrike.com/rs/281-OBQ-266/images/GlobalThreatReport2024.pdf

nuanced understanding of the strengths and characteristics of
different LLMs can contribute to more informed and effective
applications within the dynamic field of digital forensics (DF).

This paper reviews recent advances in the application of
LLMs within digital forensics, focussing on established mod-
els, methods, and key challenges. By examining contemporary
studies from 2019 onwards, the survey highlights core areas,
such as automation, investigative methods, and efficiency im-
provements facilitated by LLMs. In addition, it explores the
literature that addresses challenges in both DF and LLMs, cov-
ering limitations, ethical considerations, and forensic-specific
risks. This comprehensive review synthesises current insights
and emerging trends, offering a foundation for understanding
the potential and limitations of LLMs in DF contexts.

In light of fast-paced advancements and the recent explo-
sion in LLM-focused research, a substantial influx of LLM-
focused research papers has occurred since the launch of Chat-
GPT in late 2022. Due to this fast pace, many seminal re-
search articles exist solely as preprints on preprint services, e.g.,
arXiv. To give two examples, the initial papers for GPT-4 [6]
and LLaMA [7] are only published on arXiv, but have garnered
thousands of citations each. The recent release of DeepSeek-
V3 in late 2024 and the corresponding technical reqport [8]
is also only available on arXiv. Despite their preprint status,
these articles offer essential insights critical for contemporary
research and dialogue within the domain, making their incorpo-
ration into this article necessary to provide the most up-to-date
knowledge and perspectives.

The paper is structured as follows: Section 1.1 provides a
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Figure 1: Traditional digital forensic process model [12]

comprehensive background for the review, delving into existing
DF process models, the challenges inherent in DF, and a de-
tailed overview of the current work conducted with the use of
LLMs within DF. In Section 2 the paper delves into the realm
of Natural Language Processing (NLP), elucidating the work-
ing principles of LLMs, their architectural foundations, and the
specifics surrounding specially trained LLMs. Section 3 pro-
vides an in-depth review that focusses on the capabilities and
benchmark information of LLMs trained for coding tasks, as
well as those tailored for vision assistance. Section 3 explores
the synergy between DF and LLMs, detailing how LLMs can
be effectively employed in each phase of the DF process model.
Finally, in Section 6, the paper summarises the future chal-
lenges associated with integrating LLMs with automated agents
within the DF domain. The conclusion outlines potential av-
enues for future research and development, shedding light on
the path of future DF investigations employing LLMs. The dis-
cussion covers not only the potential negative impacts but also
the practical difficulties and risks in real world environments.

1.1. Digital Forensic Context
DF is a process for identifying, preserving, analysing, and

documenting digitally recorded data, which originate in elec-
tronic devices such as computers, servers, smartphones, and
IoT devices [9]. This exercise is required in most criminal
cases. Data collected in this process are kept unchanged and
safe for presentation in a court case or to support future investi-
gations conducted by law enforcement agencies [10].

1.1.1. Digital Forensic Process Models
DF process models consist of a series of activities that

help standardise the investigative process [11] and outline the
phases; collection, preservation of evidence, examination or
analysis, and reporting.

DF encompasses various subdisciplines such as computer
forensics, mobile device forensics, memory forensics, network
forensics, and cloud forensics, each employing distinct pro-
cesses reflected in a plethora of models within the literature [13,
14]. These models often share phases but differ in their focus
and execution. For example, Al-Dhaqm et al. [15] proposed a
mobile forensic model that adds a preparatory phase and bifur-
cates the analysis stage into examination and analysis phases.
To accommodate the complexities of computer, network, cloud,
and smart device forensics, Lutui [16] introduced a multidisci-
plinary model that requires diverse skills for effective investiga-
tion, ranging from incident detection to evidence storage.

Casey’s model, as shown in Figure 1, includes phases such
as incident recognition, evidence collection, preservation, and

presentation, with the examination phase detailed in recovery,
harvesting, reduction, and classification [12]. During incident
recognition, the focus is on identifying the incident itself,
possible evidentiary sources, and expected digital evidence
types, as well as delineating the scope of the ensuing investiga-
tion. Conversely, investigators systematically acquire pertinent
evidence from various sources encompassing computers,
smartphones, storage media, and networks during collection
and seizure. Preservation is of paramount importance in
upholding the integrity of evidence, necessitating specific
and accurate measures to ensure the unmodified condition of
the collected data throughout the investigative process. The
overarching objective remains the meticulous safeguarding of
evidence integrity.

The subsequent phase entails examination, in which ana-
lysts rigorously scrutinise the gathered data to extract pertinent
information. This endeavour may involve the use of various
forensic hardware and software tools and techniques. The ex-
amination process includes the interpretation of the information
extracted to draw conclusive inferences about the events under
scrutiny. This phase often demands a profound understanding
of both the technology employed and the context surrounding
the evidence.

Next is the reporting phase, where the findings derived from
the analysis are presented systematically in a format suitable
for legal adjudication. This may involve preparing comprehen-
sive reports and providing expert testimony in a court of law.
This model emphasises the critical nature of maintaining the
integrity and provenance of the evidence and the requirement
for expert analysis to extract and interpret pertinent informa-
tion. This culminates in a report suitable for legal scrutiny. In
particular, the analysis or examination stage is crucial in all
models, demanding specialised knowledge in the relevant DF
area [17, 18].

The advent of cloud computing has led to the Digital Foren-
sic as a Service (DFaaS) model by van Baar et al., which in-
tegrates evidence preservation and analysis into an automated
and secure software service, marking a significant evolution in
forensic methodologies [20, 11, 21].

1.1.2. Existing Challenges in Digital Forensics
DF is an evolving field, yet the literature highlights that it

still undergoes changes to address ongoing challenges and ad-
vancements. Dubey et al. [22] assert that DF faces key chal-
lenges, including the complexity of data and its volume, a lack
of standardisation, inadequacies in the power of existing tools
to support investigations, and issues related to timelines.

In addition to the previously mentioned challenges, other
issues persist including scope creep in cases due to complexity
and the vast data involved, selecting and prioritising the right
set of evidence, and efficiently allocating time and investigators
for the chosen evidence [23]. Koper et al. [24] focus on a num-
ber of these issues from the investigator’s perspective, includ-
ing challenges in adapting to a system, unexpected time sinks,
and frustrations among officers arising from expected opera-
tional timelines and the adoption of complex systems. The con-
temporary landscape of forensic science is characterised by a
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shortage of proficient agents, exacerbated by the swiftly evolv-
ing standards, practices, tools, and techniques within the field.
Moreover, the predominant emphasis of law enforcement roles
on fieldwork, as opposed to dedicated DF duties, has further
contributed to the scarcity of adept human expertise in this do-
main [25].

Automating the DF process using existing technology ap-
pears to be a promising solution to address issues related to
time management and effectiveness [26]. However, an ongoing
challenge revolves around measuring the accuracy of investi-
gations and ensuring the verification of the automated process.
This aspect remains an open area that requires more attention
and resolution [27].

1.1.3. Existing Work With LLMs in Digital Forensics
Scanlon et al. [13] analysed using ChatGPT for DF. In their

assessment, the authors evaluated the programming, incident
narration, keyword list creation, and DF teaching abilities of
ChatGPT. Their conclusion highlighted that while ChatGPT ex-
hibited some hallucinations in the output results, it still serves
as an effective assistant for code generation. Wickramasekara
et al. [28] introduced the AutoDFBench benchmarking frame-
work, and corresponding score, to evaluate code generation for
DF specific tasks against the tests and datasets used as part of
NIST’s Computer Forensics Tool Testing Program (CFTT)2.

Timeline reconstruction helps investigators deduce the
chronological “story” of an event. In line with timeline
regeneration, Silalahi et al. [29] proposed a method to detect
anomalies in a drone flight by employing sentiment analysis
with the assistance of a pre-trained LLM. Their approach
successfully discerned the differences between normal and
abnormal events with an accuracy of 92.5%.

Hansken, a DFaaS platform created by the Netherlands
Forensic Institute, is designed to help investigators handle
evidence and conduct investigations more efficiently [20].
ChatGPT has been used as an assistance for the Hansken
DFaaS system using its bespoke query language, contributing
to streamlined processes and improved support for investiga-
tors. In these experiments by Henseler and van Beek [30],
it was tasked with analysing evidence using Hansken’s trace
model. This work demonstrated the potential for ChatGPT in
helping with analytical aspects of investigations, highlighting
its ability to process and interpret evidence data.

While DF is the main focus of this paper, it is important
to recognise the broader application of LLMs in adjacent areas
within cybersecurity, many of which overlap with DF. LLMs
are proving to be valuable tools in fields such as malware anal-
ysis, security log analysis, code security reviews, and intrusion
detection areas that bridge the gap between cybersecurity and
DF [31, 32, 33]. In malware analysis, LLMs can identify pat-
terns in malicious code, while in log analysis, they assist in
detecting anomalies across large datasets, thereby improving
response times. In code-related security reviews, LLMs like

2https://www.nist.gov/itl/ssd/software-quality-group/

computer-forensics-tool-testing-program-cftt

GRACE have demonstrated the ability to identify vulnerabili-
ties in software, achieving a detection rate of 28.65% of vul-
nerabilities [34]. These applications contribute to DF investi-
gations by improving and improving evidence collection and
analysis.

2. Background of Large Language Models

This section explores LLMs, concentrating on three prin-
cipal aspects. Initially, it explores the architecture of LLMs,
detailing their design and function. Then it assesses the us-
ability of LLMs, underscoring the features and capabilities that
make them suitable for a wide range of tasks. Finally, it show-
cases the versatility of LLMs by discussing their applications
across various fields, demonstrating their wide-reaching impact
and the extensive scope of their applications.

2.1. Natural Language Processing

Popular LLMs such as Generative Pre-trained Transformer
(GPT) [35], Language Model for Dialogue Applications
(LaMDA) [36], Pathways Language Model (PaLM) [37],
Bidirectional Encoder Representations from Transform-
ers (BERT) [38], and Large Language Model Meta AI
(LLaMA) [7] stem from advances in Natural Language
Processing (NLP). NLP, which focusses on language-based
tasks, uses traditional and deep learning models to enable
applications such as language translation, text processing, and
speech recognition [39].

Deep learning, a branch of machine learning, uses com-
plex computational layers and adaptive weights to improve pre-
diction accuracy, offering a more refined analysis than con-
ventional machine learning [40]. It has excelled in image and
speech recognition and natural language understanding, mim-
icking the decision-making process of the human brain through
artificial neurons. These neurons form networks capable of in-
tricate pattern recognition and data analysis. Central to deep
learning are neural networks with multiple hidden layers that
autonomously learn and extract features from data, bypassing
the need for manual variable selection. This automatic feature
extraction makes them exceptionally adept at handling complex
tasks [41].

2.2. LLMs

An LLM is a language model that employs neural networks
with billions of parameters, trained on extensive text data.
These models are engineered to comprehend and generate
human language. Fundamentally, they rely on multiple neural
network architectures, enabling them to recognise the relation-
ships between words and phrases within sentences [42, 43].
These architectures have been a transformative force in natural
language processing. Its capability to excel across a diverse
array of language-related tasks distinguishes it as a game-
changer, in contrast to being tailored for a singular, specific
task.
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2.3. Architecture of LLMs
LLMs utilise deep learning, particularly neural networks,

to process and produce human language. Fundamentally, a lan-
guage model operates with letters or words, but since machine
learning algorithms and neural networks require vector inputs,
words are vectorised. Each word in the vocabulary is assigned a
unique numerical value for input into neural networks. Through
initial random weight assignments and subsequent backprop-
agation, words acquire numerical positions reflecting their se-
mantic similarity, culminating in a word embedding model [44].

2.3.1. Word to Vectors
Word embeddings, as introduced by Mikolov et al. [45],

entail precise and high-dimensional vector representations for
words, particularly suited for extensive datasets comprising bil-
lions of text entries. The authors explored model architectures
for word vectorisation, achieving substantial improvements in
accuracy while requiring fewer computational resources and re-
duced training time [45]. In the realm of LLMs, the primary
objective is to generate new text based on the extensive dataset
on which it was trained. For this purpose, Vaswani et al. [46] in-
troduced the transformer model, assisted by the word-to-vector
model. This architecture incorporates a self-attention mecha-
nism, as well as encoder and decoder processes, enabling the
model to quickly and simultaneously focus on pertinent infor-
mation.

2.3.2. Transformer Models
The transformer model initially aimed at machine transla-

tion, translating input words into another language, begins with
word embedding, where input, termed tokens, are vectorised.
Recognising word order is achieved through positional encod-
ing, with two main techniques: absolute and relative. Absolute
positional encoding assigns unique vectors to each position, en-
hancing the model’s ability to recognise word placement and fa-
cilitate position-specific attention [47]. Relative positional en-
coding, on the other hand, calculates the relative positions of
words by introducing a bias term that quantifies the distances
between positions, improving the model’s ability to understand
the relationships between words within a sequence [47].

Self-attention, a core mechanism within the transformer,
calculates the relationship among words in a sentence, allow-
ing the model to assess the similarity of each word with others
and generate unique representations for each [48]. The decoder
mirrors the encoder’s steps but uses different weights, starting
with positional encoding and computing self-attention values to
identify the sentence’s initial translation word.

This transformer process, which leverages stacking self-
attention and unique positional encoding, has significantly
advanced NLP tasks, including machine translation, text
generation, and summarisation, by executing these processes
in parallel and optimising the weights of both the encoder and
decoder [46, 49].

2.4. Specifically Trained LLMs
The transformer model and the self-attention mechanism

have paved the way for researchers to train language models

on trillions of tokens with billions of parameters. Several
LLMs have been trained and harnessed, each designed with
specific capabilities for diverse fields such as security [33],
chemistry [50, 51], engineering [52], medicine [53], busi-
ness [54], tourism [55], and language-related applications [53].
These models are used in tasks ranging from detecting se-
curity threats [33], analysing data and generating synthetic
actions to teaching [56], code generation [52, 57], structured
query generation [54, 58], planning [54], assisting in medical
education [53], clinical decision-making [59], leveraging
clinical settings [60], clinical validation [61], understanding
general patterns and decision-making [54], bias detection [56],
addressing ethical issues [62], language translations [63],
question answering [56], information extraction [64], and
business process automation [54], among others [53]. The
fine-tuning and retraining capabilities of LLMs enable them to
be adapted to specific tasks or behaviours in a predefined man-
ner. Fine-tuning involves taking an already trained language
model and retraining its existing weights and bias values using
a new dataset specific to a particular domain. This process
allows the LLM to be customised and refined for tasks beyond
its original training, enhancing its applicability in specific
contexts [65]. This process results in a new model that is more
tailored and focused on the specified domain. In the existing
literature, it is frequently observed that LLMs are fine-tuned
with a particular emphasis on engineering and research-related
fields. This targeted fine-tuning ensures that the model is adept
at handling tasks and generating content specifically relevant
to the intricacies of these domains [53].

2.5. Multi-modal Large Language Models (MLLMs)
Unlike traditional LLMs, which are trained on text data,

Multi-modal Large Language Models (MLLMs) are designed
to process and interpret image-based data alongside text.
These models can extract and analyse information within
images or videos, integrating visual and textual data to enhance
comprehension and analysis [66]. The application of MLLMs
is rapidly expanding across fields such as digital forensics,
where they can be used to analyse images of documents or
identify visual anomalies. Section 3.2 provides a discussion
on the potential and diverse applications of MLLMs in various
domains.

2.6. Large Action Models
While LLMs excel in text generation and processing,

they struggle with complex task manipulation and operational
control, especially when moving from language understanding
to action execution. This limitation arises because their core
design emphasises prediction and generation over direct task
execution. To overcome this shortcoming, recent research has
introduced innovative approaches, such as the Large Action
Model (LAM) developed by the Rabbit research team. LAM
extends the capabilities of LLMs by incorporating action-based
operations3. These LAMs can mimic human routines such as

3https://www.rabbit.tech/research
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scheduling meetings with given instructions, sending emails,
ordering taxis, and handling complex tasks such as making
reservations for a whole trip. In this approach, the base
model is trained to comprehend sequences of human-provided
actions and commands, allowing it to execute these actions
and tasks accordingly. Similarly, Microsoft introduced the
concept of Visualisation-of-Thought (VoT) aimed at integrating
human cognitive abilities, specifically the creation of mental
images, into the model [67]. Through this approach, it has
been demonstrated that MLLMs excel in visual tasks, thereby
enabling the extension of action capabilities within an LAM to
any LLM. These advancements signify promising directions
toward enhancing the practical applicability and versatility of
language models across various domains.

3. Capabilities of Large Language Models

This section focusses on the abilities and capabilities of
Language Model Models (LLMs) as outlined in Section 2.4.
This section also discusses the currently available fine-tuned
LLMs that exhibit potential for application in DF. Although
considered too broad for this article, Zhao et al. [68] provide
a detailed generic overview of LLMs, their operation, and how
they are trained and fine-tuned.

3.1. Programming/Code Generation

The ability to generate source code within a specific context
is a crucial skill inherent in a language model [69]. Xu et al.
[70] conducted a systematic evaluation of six LLMs for code
generation in 12 different programming languages. The bench-
marking process employed the HumanEval benchmark, along
with a tailored evaluation dataset designed to assess the func-
tional correctness of the programs generated by an LLM [71].
The benchmark comprises a set of coding problems in which
the model is tasked with generating Python functions. Each
problem is accompanied by a prompt and a set of unit tests that
verify whether the generated code produces the expected out-
put. This facilitates a systematic evaluation to generate both
syntactically correct and functionally accurate programs. Us-
ing this dataset, it is possible to measure performance on real-
world coding tasks, as well as its ability to generate solutions
that satisfy functional requirements.

The Mostly Basic Programming Problems (MBPP) is an-
other benchmark comprising 974 programming tasks. It serves
as a frequently used evaluation dataset for LLMs specialising
in code-related tasks [72]. Several LLMs explicitly trained for
code generation include Code LLaMA [73], CodeGen [74],
StarCoder [75], PanGu-Coder [76], PanGu-Coder2 [76], Wiz-
ardCoder [77], InCoder 6B [78], CodeGen-Mono 16B [74],
Code-Davinci-001 [79], Code-Davinci-002 [79], PaLM-Coder-
540B [37], CodeT5+ [80, 81], InstructCodeT5+ [82, 81],
GPT-4 with Reflexion [83], CodeGeeX [84], AlphaCode [85],
Santa-Coder [86], CodeFuse-13B [87], Codex [88], Wave-
Coder [89]. A higher value for both HumanEval and MBPP
indicates greater precision in code generation for a given task.
For detailed information, refer to Table 1, which presents the

Table 1: Trained parameter count, HumanEval and MBPP scores for LLM
based code generation (ordered by HumanEval score).

Model Parameters HumanEval MBPP

o1-mini 100B 97.6 93.9

GPT-4 with Reflexion 1.76T* 91.0 77.1

DeepSeek-V3 671B 85.6 -

DeepSeek-V3-Base 671B 65.2 75.4

Code LLaMA 34B 62.2 61.2

PanGu-Coder2 15B 61.64 -

WizardCoder 15B 57.3 51.8

Code-Davinci-002 (GPT3.5) 175B 47.0 58.1

StarCoder 15.5B 40.8 49.5

Code-Davinci-001 (GPT3) 175B 39.0 51.8

PaLM-Coder 540B 36.0 47.0

InstructCodeT5+ 16B 35.0 -

code-cushman-001 12B 33.5 45.9

CodeT5+ 16B 30.9 -

CodeGen-MONO 16.1B 29.7 42.4

CodeGen 16.1B 29.28 35.28

Codex-12B 12B 28.81 -

PanGu-Coder 2.6B 27.78 23

Sanata-Coder 1.1B 18 35

AlphaCode 1.1B 17.1 -

InCoder 6B 6.7B 16.4 21.3

counts for HumanEval and MBPP, along with the trained pa-
rameter size for each LLM. A higher score for both HumanEval
and MBPP indicates greater precision in code generation for a
given task.

Table 1 presents the scores for HumanEval and MBPP for
each of the code generation LLMs mentioned above, along with
the trained parameter size for each LLM. Four generic LLMs,
or Mixture-of-Experts (MoE) models, are also included in Ta-
ble 1: o1-mini [90], GPT-4 with Reflexion, DeepSeek-V3 and
DeepSeek-V3-Base [8]. These are included as these are the top
4 best performing models for HumanEval despite them being
MoE models.

3.2. Vision Assistance
Traditional vision assistant systems face limitations in im-

age processing or recognition, as they are typically trained on
fixed types of datasets. However, with the emergence of LLMs,
this paradigm has changed to the use of raw text as a source of
supervision [92, 93]. Research on visual recognition language
models is experiencing exponential growth, with the number
of models exceeding 1,500 in 2023 [94]. Radford et al. [92]
introduced a novel method called Contrastive Language Im-
age Pre-training (CLIP). This method is efficient and capable
of performing a wide range of tasks during pre-training. It en-
ables a model to learn a shared representation space for both

* Estimated parameter count as value is not officially released [91].
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images and text, facilitating a deeper understanding of the re-
lationships between the two modalities. Ramesh et al. [95]
proposes a model for text-to-image generation, capable of gen-
erating images as combinations derived from textual input or
sentences. Moreover, with the model named Generating Im-
ages with Large Language Models (GILL), it becomes feasible
to generate text, retrieve images, generate novel images, and
interleave the results into coherent multimodal dialogues [96].
VisionLLM is a framework leveraging LLMs for diverse vision
tasks with unified language instruction, demonstrating general-
ity and flexibility [97]. It incorporates a language-guided image
tokeniser and an LLM-based task decoder, capable of handling
open-ended tasks based on provided language instructions [97].

Visual instruction tuning leverages language-only models,
such as GPT-4, to generate multimodal language-image instruc-
tion following data. This data is then utilised to instruction-
tune large multimodal models, such as Large Language and Vi-
sion Assistant (LLaVA) [98, 99, 6]. The open source LLaVA
project introduces an end-to-end trained model, integrating a
vision encoder with an LLM. Notably, LLaVA showcases mul-
timodal chat capabilities. LLaVa has the capability to inter-
act with images, provide detailed descriptions and respond to
queries with a reported accuracy of 92.53% [98]. This shows its
effectiveness in understanding and generating contextually rele-
vant information on visual content [98]. MiniGPT-4 is an open-
source, powerful visual instruction-tuned LLM, and it demon-
strates versatility by generating stories and poems inspired by
provided images and teaching users how to cook based on vi-
sual cues from food photos. This showcases its ability to under-
stand and respond creatively to various visual stimuli [100].

Position-Enhanced Visual Instruction Tuning (PVIT)
represents an extended version of Multimodal Large Language
Models (MLLMs). It facilitates region-level encoding in an
image, enabling the model to discern and identify information
within specific regions [101]. This model enables users to
interact with both the language and drawing the bounding
boxes to indicate the area of interest within an image [101].
Other MLLMs, such as Visual ChatGPT [92], InternGPT [102],
Flamingo [103], BLIP-2 [104], and Kosmos [105], are noted
in the literature for their ability to assist users in visual-related
information.

Video information is gaining prominence in vision assis-
tance, and Zhao et al. [106] has introduced a novel approach
to automatically narrate lengthy videos using LLMs. UniViLM
is another language pre-trained model designed for both multi-
modal understanding and generation. It is capable of retrieving
a video segment based on text descriptions, generating captions
for given video clips, segmenting a video according to a pro-
vided text input, and performing multimodal sentiment anal-
ysis of a video segment [107]. VidIL and LLaViLo are ad-
ditional MLLMs with similar capabilities, demonstrating pro-
ficiency in video classification and video-language operations
such as video captioning, video question answering, video cap-
tion retrieval, and prediction of future video events [108, 109].

These MLLMs adhere to a shared task set, that includes
visual question answering, visual captioning, visual common-
sense reasoning, visual generation, multimodal affective com-

puting, visual retrieval, vision language navigation, multimodal
machine translation, visual question generation and visual dia-
loguing, as summarised in Table 2 [110, 111].

3.3. Conversation
Specific LLMs are trained explicitly for meaningful and

coherent dialogues with humans. An example is Dialogue
Generative Pre-trained Transformer (DialoGPT), a fine-tuned
model trained on 174 million Reddit conversations [112].
DialoGPT exhibits the ability to provide human-like answers in
tested conversations [112]. Dettmers et al. [113] introduced a
fine-tuning mechanism for LLMs named Quantised Pre-trained
Language Model into Low-Rank Adapters (QLoRA). This
allows for the fine-tuning of large-parameter LLMs with low
training costs. They introduced Guanaco, a fine-tuned LLM
with 65 billion parameters, which achieved a performance level
of 99.3%. Falcon-180B and Falcon-40B represent another
set of open-source LLMs with 180 billion and 40 billion
parameters. These models are trained to communicate in
multiple languages, allowing users to engage in conversations
in languages other than English [114]. To evaluate the accuracy
of human-like dialogue systems, Ou et al. [115] proposed a
dialogue evaluation benchmark named DialogBench, which
consists of 12 dialogue tasks to assess the capabilities of
LLMs. In their evaluation, they assessed 28 pre-trained and
instruction-tuned LLMs, demonstrating that GPT-4, ChatGPT,
and KwaiYii-13B-Chat emerged as the top three models for
conversations in domains related to daily life and professional
knowledge.

In DF chat conversations, the significance lies in facilitat-
ing non-technical investigators to elucidate terminologies and
areas lacking understanding. This serves a dual purpose, acting
as an interactive teacher to enhance comprehension in discus-
sions [13].

3.4. Prompt Engineering
Achieving quality outputs from LLMs often relies on

providing well-crafted, meaningful, and precise input queries,
known as input prompts. However, even human-defined natural
language instructions may not consistently yield the best
results. Prompt engineering is a methodology that involves
carefully defining and instructing LLMs to generate more
accurate and desirable outputs. Through thoughtful refinement
of input prompts, prompt engineering aims to enhance the
performance and effectiveness of LLMs in generating output
that align more closely with user expectations and require-
ments [116, 117]. This plays a crucial role in biasing LLMs
toward specific domains or topics, enabling a more targeted
and nuanced response. By carefully crafting prompts, users
can guide LLMs to dive deeper into the nuances of their
queries, leading to more accurate and relevant outputs. This
approach enhances the model’s responsiveness to specific
areas of interest, allowing users to fine-tune and tailor their
interactions with the LLM for more precise and meaningful
outcomes. Prompt engineering with LLMs is employed in vari-
ous sectors, including, but not limited to, medical, engineering,
construction, and healthcare [118, 119].

6



Table 2: Capabilities of MLLMs trained for vision assistance
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Image ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓Visual question answering
(Task of providing an answer to a visual input.) Video ✓ ✓

Image ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓Visual captioning
(Task of generate fitting visual descriptions.) Video ✓ ✓

Image ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓Visual common-sense reasoning
(Task of infer understanding from images or video clip.) Video ✓ ✓

Image ✓ ✓ ✓Visual generation
(Task of generating image or video from a given textual input.) Video

Image ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓Multimodal affective computing
(Task of automatically recognition of emotions and causes.) Video

Image ✓ ✓ ✓ ✓Visual retrieval
(Task of language and vision understanding and retrieval.) Video ✓

Image ✓ ✓ ✓Vision-language navigation
(Task of navigation based on linguistic instructions.) Video ✓

Image ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓Multimodal machine translation
(Task of translation from a video or an image) Video

Image ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓Visual question generation
(Task of generating questions for given image or video) Video ✓

Image ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓Visual dialoguing
(Task of automating a conversation about a video or image) Video ✓

ChainForge is an open source Graphical User Interface
(GUI) tool developed specifically for prompt engineering
and hypothesis testing derived from LLMs that can be used
in the aforementioned fields to generate accurate and quick
output [120].

Although prompt engineering is a necessity in generating
the desired output from an LLM, the results can still be bi-
assed based on the wording and phrasing provided by the user.
Since the effectiveness of prompts depends on the user’s profi-
ciency in English, the output may vary significantly depending
on the exact requirements of the user and how the LLM inter-
prets these prompts. In addition, the prompts can unintention-
ally reinforce existing biases within the model’s training data,
potentially skewing the results. Therefore, prompt engineer-
ing must be approached carefully and methodically to minimise
misinterpretation and maximise output relevance.

3.5. Autonomous Agents

The evolution of LLMs, with their ability to generate in-
formation and communicate in a manner that resembles human
interaction, has led to the development of autonomous agents.
The expectation is that these agents will effectively perform a
wide range of tasks, taking advantage of the human-like ca-
pabilities inherent in LLMs [121]. These autonomous agents
follow a four-stage architecture that includes profiling, mem-
ory, planning, and action. Profiling defines the agent’s role,
privileges, domain, and expertise [121]. Memory stores infor-
mation on tasks and profile data relevant to the environment.

Planning involves breaking down given tasks into subtasks and
solving them individually. The action stage is the final phase
where all decisions and subtasks are translated into actions ex-
ecuted by the agent. Zhang et al. [122] developed a framework
designed to facilitate collaboration between GenAI agents and
humans. This framework enables planning and communication
for specific tasks, leveraging the capabilities of LLMs Sim-
ilarly, AgentSims [123], ToolBench [124], GameGPT [125],
ChatDev [126], Voyager [127], and RecMind [128] represent a
diverse array of autonomous GenAI agents developed with dis-
tinct goals and objectives. Certainly, AutoGen stands out as a
multiagent framework with the capability to autonomously per-
form tasks or collaborate with human feedback. This flexibility
makes it a versatile tool for various applications [129].

In addition to the AutoGen framework, AgentLite [130],
Camel [131] and CrewAI [132] are each similar LLM-based
agent framework architectures. These platforms are distin-
guished by their support for task decomposition, multi-agent
orchestration, and adaptable reasoning. In particular, AgentLite
and CrewAI facilitate work delegation functionalities, increas-
ing their utility in various operational contexts.

3.6. Retrieval-augmented Generation

The content generated by LLMs is highly dependent on the
extensive text-based datasets on which they are trained. These
datasets may contain vast amounts of information utilised by
the LLMs. However, maintaining up-to-date knowledge within
LLMs is challenging, as fine-tuning or retraining a model
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is often extremely costly and resource-intensive. Retrieval-
augmented Generation (RAG) is a technique designed to
address this LLM knowledge gap by retrieving information
from external sources and integrating it with the model’s
internal representations [133].

A major advantage of RAG is its ability to reduce the hallu-
cination problem in LLMs, allowing them to generate more ac-
curate and current information [134, 135]. The architecture of
RAG consists of a knowledge base and a retriever model. The
retriever model converts input prompts and content from the
knowledge base to vectors. The user prompts are then appended
with the most relevant content from the knowledge base, and
this augmented prompt is sent to the base model to generate a
more accurate response [135].

3.7. Limitations and Risks
As explored in the preceding sections, LLMs appear to

possess a vast range of capabilities. However, it is crucial
to acknowledge that they are not without limitations and
risks. In multimodal LLMs, it is a common problem that they
are over-reliant [136]. There are also potentially significant
drawbacks associated with LLMs, including issues such
as bias, explainability challenges, reasoning errors, logical
errors, hallucinations, vulnerability to prompt injections, and
spelling and grammar errors. These limitations underscore
the importance of a cautious and critical approach when using
LLMs in various applications. Furthermore, the literature
shows limitations in LLMs, including statistical inconsistency,
the absence of emotional attributes in linguistic responses, and
challenges related to fact verification [137, 138]. These factors
contribute to a comprehensive understanding of the constraints
and potential shortcomings when working with LLMs. Thapa
et al. [139] contend that while LLMs can indeed reduce the
time and costs associated with annotation tasks, they are not
completely supplanting human annotation. This is because
they struggle with intricate linguistic constructions, such as
idioms, irony, sarcasm, and metaphor, which can potentially
impact the precision of annotations.

Similar limitations are associated with MLLMs, such as
over-reliance on training data, sensitivity to word order in input
prompts, and vulnerability to prompts containing additional
knowledge [140]. There are several more concerns associated
with LLMs, including restricted text input and output lengths,
limited comprehension of syntax, ethical considerations
with the generated information, constraints with multilingual
capabilities, elevated costs associated with training and main-
tenance, inadequate understanding of human behaviours and
limited ability to learn incrementally [141, 142].

Despite their considerable capabilities, LLMs are not
without risks. Wiggins and Tejani [143], Lund and Wang
[144], Rahman and Santacana [145] provide comprehensive
overviews of risks linked to LLMs. These include the ho-
mogenisation of results, whereby defects or biases from the
foundation model are inherited by all downstream models.
There is also the risk of monopolistic control by foundation
model owners, potentially concentrating decision-making
power, resource access, and influence over model usage in

a single entity. Ethical and legal concerns are intertwined
with concerns about privacy and intellectual property. In
addition, there are economic and environmental impacts that
raise concerns about the potential displacement of human
workers. Furthermore, inequity and misuse of LLMs, such
as the creation of deepfakes and their application in criminal
and unethical activities, pose additional challenges. Given that
LLMs do not inherently prioritise the precision of information,
Bender et al. [146] have highlighted the risk of generating
social turbulence, especially when used on social media
platforms. Furthermore, the use of LLMs is associated with
significant costs, leading to a direct environmental impact due
to their substantial energy consumption [147].

The risks associated with LLMs are predominantly em-
phasised within Information Communication and Technology
(ICT) and cyberspace. Primary concerns include the disclosure
of personal information, the generation of malicious text, and
the creation of malicious code [148].

The Beyond the Imitation Game benchmark (BIG-bench),
serves as an evaluation framework for LLMs. It encompasses
204 distinct language-related tasks. These span contextual and
context-free question-answering, reading comprehension, logi-
cal reasoning, etc. [149]. It is acknowledged that the challenge
of social biases and dependency on the English language per-
sists in almost all LLMs.

When employing LLM-based agents, it is imperative to
address challenges associated with LLM-based multi-agent
frameworks as well. The handling of many defined agents may
necessitate substantial computational resources and memory,
thus mandating high-end computing infrastructure for seam-
less operations. Furthermore, the absence of a standardised
comprehensive benchmarking system to evaluate the behaviour
of such agents underscores the limitations inherent in the
development of LLM-based multi-agent systems. These chal-
lenges underscore the need for further research and refinement
in this domain to enhance the efficiency and effectiveness of
LLM-based multi-agent frameworks [150].

Similarly to these risks, the Open Web Application Secu-
rity Project (OWASP) has identified ten major risk factors re-
lated to LLMs. These risks include training data poisoning,
prompt injection, denial of service, insecure output handling,
supply chain vulnerabilities, sensitive information leakage, ex-
cessive agency, insecure plugins, overreliance, and model theft
of data. Despite these threat factors, OWASP also stressed the
need for regulatory bodies to supervise LLMs in various do-
mains and recommended the implementation of risk manage-
ment programmes that incorporate the checklist provided by
OWASP4.

The EU’s Artificial Intelligence Act (AIA) proposes a
framework for categorising AI applications based on their
associated risk levels, with the primary aim of safeguarding
human rights and maintaining ethical standards in AI de-
ployment [151]. Within the AIA, AI applications are divided
into categories such as “unacceptable risk”, which includes

4https://owasp.org/www-project-top-10-for-large-language-model-
applications
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practices such as exploiting vulnerabilities and social-ranking
techniques due to their potential for individual manipulation
and impact on fundamental rights. These categories have
relevance to DF, where the ethical application of LLMs must
balance the advantages of automation with the imperative
to address privacy concerns. Since DF involves sensitive
data and influences legal outcomes, the use of LLMs must
align with AIA’s risk-based principles, ensuring transparency,
accountability, and fair application. In future AI applications
within DF, it is essential to implement appropriate measures to
prevent biases and hallucinations to mitigate the risk of misuse
of AI.

4. Large Language Models For Digital Forensics

Section 4 summarises existing work with LLMs in DF, the
feasibility of employing them, and potential future directions.
As discussed in Sections 2 and 3, despite the widespread use of
LLMs in various fields to improve the efficiency and accuracy
of tasks within specific domains, their application in the field of
DF is still relatively new.

Conducting a thorough analysis of LLMs use in conjunc-
tion with the stages of the DF process model, as highlighted in
Section 1.1.1, proves to be a valuable undertaking.

4.1. Incident Recognition Phase

In the initial phase of Casey’s DF process model, which de-
lineates the recognition of an incident, LLMs can serve as a
valuable detection mechanism [152]. In cybercrime cases, the
primary artefacts often involve data logs, data dumps and net-
work dumps. Fine-tuning an LLM to monitor text-based logs
and related files enables it to discern and identify potential or
ongoing incidents within the environment. In network-related
activities, anomaly detection plays a pivotal role in initiating
an incident response. Various existing anomaly detection tech-
niques are employed in systems for this purpose. Using their
ability to identify patterns in a series of text data sets, LLMs
exhibit potential as an Intrusion Detection System (IDS) within
such systems [33, 153].

For instance, Kan et al. [154] introduces Mobile-LLaMA,
an open source mobile network-specialised LLM, fine-tuned
through instructional data to enhance their capabilities for net-
work analysis tasks within 5G environments. Mobile-LLaMA
supports three primary functions: IP routing analysis, packet
analysis, and performance analysis.

4.2. Collection Phase

Although evidence collection or seizure traditionally
involves physical tasks that require human interaction, LLMs
can play a role in identifying and listing potential pieces of
evidence at a crime scene. For example, in the examination of
photographs or video records from a crime scene, an investi-
gator can enlist the help of a MLLM such as LLaVa, GPT-4,
or VisionLLM. These models are capable of processing infor-
mation within the images and generating a text-based output,
facilitating the interpretation and categorisation of visual data.

Although this task may seem simple and within the capabilities
of a human agent, the efficiency becomes particularly evident
when dealing with a massive-scale investigation involving
thousands of collected artefacts and photographs. Using an
MLLM for initial processing can significantly save time, with
human agents then focussing on the crucial task of verification
and validation.

4.3. Preservation/Acquisition Phase

The preservation of evidence is centred on maintaining in-
tegrity. To achieve this, various tools such as EnCase and FTK
Imager have been used, helping investigators streamline their
work processes [155]. In the context of non-technical DF stake-
holders being able to interrogate the evidence, it becomes fea-
sible for a user to articulate their requirements/query in natural
language. Subsequently, the LLM generates source code tai-
lored to the specific need, executes the code on the data, and
returns the result in consumable natural language.

LLMs specialised in code generation, such as StarCoder
and Code LLaMA, can be fine-tuned and retrained for
domain-specific tasks, including the preservation of disk
evidence through customised code and script generation.
These LLMs are capable of generating scripts or code snip-
pets that create secure copies of disk images, metadata, and
partition information, as well as automating cryptographic
hashing and verification routines to maintain the evidence’s
integrity through checksums. Additionally, LLMs can assist
in documenting preservation steps by generating logs and
summaries for each stage of the disk preservation process,
thereby supporting the chain of custody during acquisitions.
However, despite these capabilities, human expertise remains
essential for identifying and collecting potential sources of
evidence during the preservation phase, as the application of
LLMs in this stage is currently limited to lower-potential tasks.

In certain instances, the gathering of live data for forensic
investigations becomes crucial, particularly data collected at the
crime scene. For this purpose, investigators can use DFaaS plat-
forms such as Hansken. Hansken possesses the ability to amal-
gamate custom extraction APIs for data extractions, and these
APIs can be developed using code-generative LLMs [20]. This
approach improves the adaptability and efficiency of the inves-
tigative process.

As stated in Section 3.5, the automation of code genera-
tion and unit testing can be facilitated by autonomous agents
that use LLMs as their core. AutoGen, being an open source
framework, provides the means to develop AI agents tailored
for specific tasks. These AutoGen agents are not only customis-
able and conversational, but can also operate in various modes,
employing combinations of LLMs, human inputs, and various
tools [129].

Automated agents, particularly those developed within
frameworks such as AutoGen, can be used in the preservation
phase of investigations. These agents can be assigned specific
tasks, such as acquiring disk images, generating disk hashes,
retrieving disk metadata, and compiling acquisition reports.
By defining precise roles and tasks for AI agents, it is possible
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to streamline and standardise these preservation actions,
improving the management of digital evidence [129, 156].

4.4. Examination Phase

This phase constitutes a crucial component of the investiga-
tion, playing a crucial role in elucidating the case through activ-
ities such as data recovery, collection, reduction, and classifica-
tion. For each of these components, LLMs fine-tuned for script-
ing can significantly assist, especially at a larger scale. Within
these components, tasks such as keyword search, file recov-
ery, pattern matching, and fragment reassembly can be achieved
with minimal technical knowledge using LLMs. LLMs can pro-
vide valuable assistance in these tasks by generating new codes,
crafting regular expressions, generating passwords and/or pass-
word hash lists for decryption, and creating sample logs or files.
LLMs can generate a set of instructions, queries, and Applica-
tion Programming Interface (API) validations from natural lan-
guage provided by a human. This opens up the possibility of
integrating third-party tools like Scapy, tshark, John the Ripper,
and others seamlessly into the investigative process, enhancing
the toolkit available for DF investigations, and the ability to au-
tomate these processes enhances efficiency and effectiveness in
the examination phase of the investigation.

The use of LAMs and VoT techniques in the examination
phase can significantly enhance the efficiency of an investiga-
tion. Since LAMs and VoT specifically focus on task manipu-
lation, investigators can offload some examination work to an
LAM, which will then generate the final results from a series
of subtasks. This approach can allow investigators to focus
on higher-level analysis and decision making, thus streamlin-
ing the overall investigative process.

4.5. Analysis Phase

The analysis phase involves understanding the incident and
obtaining a conclusive understanding based on the information
collected during the examination phase. As also highlighted in
Section 1.1.3, it has been demonstrated that LLMs are effective
in case analysis [30]. The use of MLLMs, which possess the
capability to interpret images, broadens the scope for analysing
a crime case more comprehensively.

Using Gemini 1.5, Xu et al. [157] presented a tutorial on
profiling a suspect’s web history through an LLM. This case
study demonstrates how an LLM can help identify potential
motivations, personal interests, and psychological characteris-
tics of the suspect. In conclusion, the authors suggest that such
mechanisms could power AI-assisted tools, enabling law en-
forcement authorities to improve the identification of cyber-
criminals and malicious entities.

The Digital Forensic Cybercrime Language as a Service
(DFClaaS) is an innovative system developed to address the
complexities of text-based cybercrime [158]. Using natural
NLP techniques, including LLMs, sentiment analysis, and
lexicon analysis, DFClaaS aims to improve capabilities in
incident reporting, analysis, and investigation. The primary
objectives of DFClaaS include implementing microservices to
address specific challenges, proposing an advanced system to

improve incident handling, and providing valuable tools for DF
investigators. Designed to serve individual users, organisations,
and forensic professionals, DFClaaS is a versatile and effective
resource in the ongoing fight against cybercrime.

LLMs can be specifically fine-tuned for the analysis of var-
ious data types, including log files, email contents, chat tran-
scripts, call records, file metadata, hex dumps, memory dumps,
and registry hives. Incorporating contents such as event logs,
timestamps, and network traffic captures further enables the ef-
fective recreation of incidents by correlating each data set with
the assistance of LLMs. In addition, MLLMs that are audio and
video specific can assist in analysing content within these for-
mats. This specialised capability can significantly reduce the
time investigators spend analysing audio and video data during
investigations.

The use of automated agents can effectively distribute the
analysis workload. Moreover, leveraging Augmented Large
Language Models (ALLMs) and RAG techniques can improve
knowledge retrieval in real time, thus improving the accuracy
of analysis and decision-making processes [159]. For example,
integrating a source of intelligence with an RAG system can
assist investigators in connecting the dots during a DF investi-
gation.

Other than these applications, LLMs can increase produc-
tivity through enhanced information correlation during the
analysis phase. Shafee et al. [160] suggest that LLMs hold
significant potential for data correlation and cybersecurity
applications. The referenced study evaluated the perfor-
mance of various LLM-based chatbots, including ChatGPT,
GPT4all, Dolly, Stanford Alpaca, Alpaca-LoRA, Falcon, and
Vicuna, specifically for text classification and Named Entity
Recognition (NER) tasks using OSINT data. The findings
indicated that, although the commercial chatbot GPT-4 and
the open-source GPT4all performed well in text classification,
all tested LLM-based chatbots showed limitations and were
less effective for cybersecurity entity recognition compared to
specialised models. The study concludes that there remains
room for improvement.

4.6. Reporting Phase
The quality and validity of the evidence, along with the

thoroughness of the analysis, are encapsulated in the final re-
port. The reporting phase holds significant weight, as the en-
tire judgement may hinge on this crucial stage. Notably, DF
is experiencing heightened scrutiny about the quality of the re-
ports, emphasising the importance of precision and clarity in
this phase [161]. As pointed out by Champod et al. [162], there
is no standard framework for evaluating and reporting scientific
findings to authorities and stakeholders. To provide assistance
and alleviate scrutiny, incorporating LLMs for report creation
is a viable solution.

While LLMs are inherently non-deterministic, adhering
to investigation standards such as ISO/IEC 27043:2015 can
establish robust processes around data integrity and evidence
handling, even though these standards do not directly address
the randomness or variability in LLM outputs. The ISO/IEC
27043:2015 standard provides guidelines for a consistent DF
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investigation framework, focusing on maintaining procedural
rigour rather than modifying model behaviour. Although
it does not directly resolve issues of LLM determinism, it
can serve as a protocol to ensure that procedures involving
LLMs uphold investigative standards and maintain integrity
throughout the process [163].

A preliminary feasibility study by Michelet and Breitinger
[164] highlighted the potential of LLMs to assist in automating
forensic report generation. These models can facilitate the cre-
ation of structured sections, such as methodologies, data anal-
ysis, and summaries, by generating coherent, case-specific in-
sights from forensic data. Additionally, LLMs could automate
the production of reports in alternative formats, such as HTML
or LATEX, which are frequently used for dynamic, web-based, or
highly technical documentation.

4.7. Other Possibilities

Scanlon et al. [13] highlights that LLMs can play an im-
portant role in teaching scenarios. This involvement extends to
activities such as storyboarding, creation of synthetic content,
and synthetic character profiling.

Fine-tuned models could further enhance training by gen-
erating more complex, realistic case examples that challenge
trainees with nuanced scenarios, providing a robust foundation
for practical skills development. These models may also help
translate technical findings into accessible language, facilitating
communication of insights to non-specialists, such as judges or
other stakeholders.

4.8. Discussion on Potential for LLMs in DF

To provide a comprehensive understanding of the potential
use of LLMs, Table 3 clarifies the sample functionalities
within the framework of the National Institute of Standards
and Technology (NIST) Computer Forensics Tool Testing
Program (CFTT), highlighting the usability of LLMs and
example prompts. The CFTT project establishes overarching
specifications to assess the capabilities of tools, a framework
adopted by numerous prominent free and commercial tools 5.

The potential for having a positive impact on the typical
phases of the investigation increases as one progresses through
the typical order of the phases. For example, there is little im-
provement that can be made by an LLM or automated scripting
during the identification or acquisition phases, but significant
potential for aiding investigators in the reporting phase [164,
156] – these are first and foremost large language models. The
low/medium/high potential outlined below evaluates each DF
phase based on three key requirements: reliance on human ex-
pertise, physical versus digital evidence handling, and scope for
automation, as explained below.

• Low Potential for the Identification and Collection
Phases

5https://www.nist.gov/itl/ssd/software-quality-group/computer-forensics-
tool-testing-program-cftt

– High dependency on human involvement, expertise,
and/or specialised knowledge.

– Involves extensive handling of physical evidence.

– Limited or no feasibility for automation.

• Medium Potential for the Preservation Phase

– Requires some level of human involvement or ex-
pertise, but is not critical to the process.

– Primarily deals with digital evidence, with minimal
physical evidence handling.

– Feasible for automation to a significant extent.

• High Potential for the Examination, Analysis and Re-
porting Phases

– Human involvement is needed for expert verifica-
tion of the conducted analysis.

– Exclusively focused on digital evidence.

– Many common tasks are suitable for significant
support from LLMs.

With these possibilities, the scope for research in DF is vast.
Future research could be extended to the generation of digital
forensic reports, as well as the summarisation of these reports
for non-technical users. This would save time, but can also lead
to more consistent documentation compared to manual docu-
mentation. Given the capacity of LLMs to manage large textual
datasets, exploring pattern recognition holds significant value,
particularly for investigations requiring the detection of anoma-
lies or outliers in chats, log events, or emails.

In addition, LLMs’ ability to interpret the tone of messages
or chats enables their application in the sentiment analysis
of text-based evidence. There is also potential in fine-tuning
LLMs for domain-specific tasks, such as network forensics,
where LLMs could analyse log files and application data
related to specific activities. Automating LLM-based DF
tools could further enable investigators to generate customised
reports using natural language queries.

A critical future research direction lies in the ethical and
legal considerations of LLM-generated content. As the appli-
cation of LLMs is still emerging, future studies should focus on
developing appropriate benchmarks, standardisation protocols,
and addressing legal aspects to ensure responsible use of this
technology.

5. Challenges and Risks

This section discusses the challenges and risks of using
LLMs in DF. Despite their promising potential, there are
significant risk factors to consider. These risks can have
severe consequences for DF if not adequately identified and
considered in the DF process.
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Table 3: DF functionalities by CFTT highlighting the usability of LLMs and example prompts

CFTT Functionality DF Phase(s) Usable LLMs/Agent Frameworks Example Prompt

Cloud Data Extraction Acquisition LLaMA (Fine-Tuned), Code Llama,
StarCoder, AutoGen or CrewAI

Retrieve all the data inside given S3 bucket by
using given credentials

Deleted File Recovery
Specs

Acquisition,
Examination

LLaMA (Fine-Tuned), Code Llama,
StarCoder, AutoGen or CrewAI

Find all the deleted files from the X disk im-
age and recover them to Y location

Disk Imaging Acquisition LLaMA (Fine-Tuned), Code Llama,
StarCoder, AutoGen or CrewAI

Get a full disk image from this computer and
save it in Z location

Forensic File Carving Acquisition,
Examination

LLaMA (Fine-Tuned), Code Llama,
StarCoder, AutoGen or CrewAI

Find all the deleted PDF files from X disk im-
age

Forensic Media Prepa-
ration

Acquisition LLaMA (Fine-Tuned), Code Llama,
StarCoder, AutoGen or CrewAI

Prepare the given X device for new investiga-
tion

String Search Examination LLaMA (Fine-Tuned), Code Llama,
StarCoder, AutoGen or CrewAI

Search all the files containing the email of
mail@test.com

Mobile Devices Examination LLaMA (Fine-Tuned), LLaVa (Fine-
Tuned), Code Llama, StarCoder, Au-
toGen or CrewAI

Find all the photos taken with a computer
within the last 3 months

MS Windows Registry Examination LLaMA (Fine-Tuned), Code Llama,
StarCoder, AutoGen or CrewAI

Find information about the users from a given
Windows disk image

SQLite Databases Examination LLaMA (Fine-Tuned), Code Llama,
StarCoder, AutoGen or CrewAI

Find the access time of user Y to application
X using given SQLite databases

5.1. Challenges for LLMs in Digital Forensics

To optimise the results, the LLMs will likely need to be
trained with specific forensic data (i.e., previous case data) to
achieve the best results. Given the complexity and variation
of the cases, it is questionable how good the training data are
and whether there are sufficient data [165]. Any bias in training
data can lead to skewed interpretations and unjust outcomes.
This problem of bias can be mitigated by using diverse and
representative datasets during the training phase, e.g., datasets
that come from diverse sources, different case types and ge-
ographic regions. Furthermore, techniques such as data fil-
tering, distribution reconstruction, rebalancing, regularisation,
and prompting can be implemented to actively identify and cor-
rect biased patterns in the base data sets of the model and its
outputs [166, 167]. These techniques involve adjusting model
weights or incorporating fairness constraints during training to
reduce the likelihood of biased predictions. Regular audit of
the model’s performance against fairness benchmarks is also
crucial to ensure that it remains unbiased over time [168].

The experience level of investigators and the practical
strategies employed in conducting investigations are chal-
lenging to replicate with LLMs. Initially, LLMs can excel
in assisting with certain subtasks, such as parsing and data
conversion, tasks in which output can be easily verified.
However, when it comes to more interpretative or inferential
tasks, LLMs’ lack of inherent transparency introduces ex-
plainability challenges. Unlike deterministic software, whose
logic can be easily traced, LLMs often act as black boxes,
making it difficult to validate and understand the rationale
behind their conclusions, particularly when these outputs
extend beyond straightforward parsing into areas requiring
judgement and reasoning. This underscores the importance of

explainability in the application of LLMs to forensics, where
understanding the basis of each result is crucial for accuracy
and accountability [164].

Publicly hosted and maintained LLMs are generally un-
suitable for casework due to the sensitivity of the evidence and
information involved, which require strict privacy and security
controls that cannot be reliably ensured on public platforms.
Furthermore, managing the substantial infrastructure needed
for LLM training and deployment is both energy and resource
intensive, presenting a financial hurdle, especially for smaller
forensic laboratories with limited budgets. Although methods
like retrieval-augmented generation (RAG) or prompt engi-
neering can reduce some of the computational load by tailoring
responses with existing models, they still require powerful
GPU resources to effectively run these models, adding to the
cost and accessibility barriers. Centralised systems could be a
viable option, but they require well-defined guidelines for data
sharing and stringent security standards to safeguard sensitive
information.

Although LLMs can serve as valuable tools to support
forensic investigations, it should be recognised that they
currently function best as an aid, not a substitute for human
expertise [169]. There is a risk that people may place too much
trust in the results generated by LLMs (over-reliance), which
could lead to complacency and overlook the need for detailed
human expert analysis and validation.

To mitigate the potential misuse of LLMs, many LLMs are
subjected to censorship [170, 171]. Although this censorship
may serve as a preventive measure against unethical use, it can
pose challenges in the field of DF. For example, if an investiga-
tor seeks evidence related to ‘drugs’ or evidence of other illegal
material, censorship of the LLM may restrict access to accu-
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rate information related to the investigator’s query. This limita-
tion underscores the need for a nuanced approach to censorship
in LLMs, balancing ethical considerations with the imperative
of facilitating effective forensic investigations. In addition, the
censorship of generic, publicly accessible LLMs further sup-
ports the argument for a discipline-specific DF LLM.

Finally, ethical and legal considerations must also be dis-
cussed. Determining accountability in cases where LLMs pro-
duce false information or are compromised by hacking. Clari-
fying responsibilities between developers, users, and regulators
is crucial to establish a framework for accountability. If LLM
generated DF results lead to incorrect information, the responsi-
bility may lie with both the developers, for ensuring the model’s
accuracy, and the users, for appropriately interpreting and vali-
dating the results.

5.2. Risks of Integration

The integration of LLMs within the DF process comes
with inherent risks, in addition to the general LLM limitations
outlined in Section 3.7. In particular, in the examination,
analysis, and reporting phases, the use of LLMs introduces
the risk of producing inaccurate information, primarily due
to the phenomenon of inheritance hallucinations associated
with these models [164, 169]. Additionally, the biases and
obscurities present in an inheritance model can significantly
impact the performance of a DF-focused LLM – potentially
leading to the unacceptable generation of biased or inaccurate
information within the DF process.

Hallucinations in LLMs present a considerable risk, as they
can produce information that appears credible but is incorrect.
This can lead law enforcement authorities to form invalid
assumptions and make flawed decisions based on unreliable
results. Additionally, inherent biases in LLMs can influence
investigative outcomes, which could affect the fairness and
integrity of legal procedures. Data privacy concerns are also
prominent, as sensitive information confidentiality may be
compromised when using LLMs in DF processes. Together,
these factors present substantial challenges to the reliable and
ethical application of LLMs.

It is also crucial to acknowledge that DF LLMs, like
any complex model, are susceptible to adversarial manipula-
tion [172]. This vulnerability poses a substantial risk in the
context of sensitive domains such as DF, where the integrity
of the information obtained is paramount. Adversarial attacks
can compromise the reliability of LLM-generated outputs,
potentially influencing the outcomes of various phases within
the DF process.

Indeed, despite incorporating human verification, outputs
and reports generated by LLMs within DF applications may
encounter challenges regarding acceptance within the legal
systems of different countries. This highlights a significant
usability risk associated with LLM-based DF applications,
but one that can be carefully mitigated by limiting the tech-
nology’s deployment as a human-in-the-loop investigative aid
as opposed to directly feeding into any investigative/judicial
decision-making processes.

Mitigating these changes and risks can be challenging,
particularly in scenarios that involve adopting country-specific
legal systems. However, there are potential strategies to address
technical challenges such as hallucinations, censorship, and
substantial infrastructure costs.

One solution to mitigate hallucination was suggested by Ji
et al. [173], who proposed an interactive self-reflection method
for generated knowledge and answers, an approach that has
shown promise. Another method of reducing hallucinations is
the use of RAG, which provides a larger knowledge base for
LLMs to minimise unknown information [135]. Other methods
such as knowledge graphs, bias detection mechanisms, active
learning methods for LLMs, supervised fine-tuning strategies,
hallucination mitigation frameworks, and new decoding strate-
gies can also help mitigate hallucinations to some extent [174,
175].

Censorship issues can be addressed by fine-tuning the
model with uncensored information, a technique already
applied to the LLaMA and Mistral models, leading to the
development of the Dolphin models. An example is the
Dolphin-2.0-mistral-7b, which is an uncensored version of the
Mistral 7B model [176].

The high infrastructure costs associated with these models
can be mitigated by employing Data Forensics as a Service
(DFaaS) platforms such as Hansken. With DFaaS, investiga-
tors only need to input queries related to their investigations us-
ing personal computers, while the platform manages the model
maintenance and computational demands [20].

Despite these promising integration risks, the use of LLMs
may face limitations in adaptability. The performance of an
LLM is inherently tied to the dataset on which it was trained,
which means that its ability to respond to new or emerging in-
formation is constrained. For example, if an LLM is tasked with
identifying possible malware in a system, it may struggle to de-
tect newer malware variants that were not part of its training
data [31]. To mitigate such issues, LLMs need to be fine-tuned
frequently, which poses its own challenges due to the significant
computational power required for such operations.

6. Conclusion

The convergence of LLMs with an array of technologies
represents exciting synergy. Although the utilisation of LLMs
in the realm of DF is still in its nascent stages, there is evi-
dence of their substantial potential to significantly increase the
efficiency of investigations. The exploration of investments for
LLMs across the entire DF process is considered, with the aim
of improving the productivity and efficiency of investigations.
Additionally, the integration of LLMs into current DF tools is
posited to reduce user training times, as these models compre-
hend natural language input and provide output accordingly. In
the dynamic landscape of LLM applications for DF, promising
avenues for further exploration and advancement unfold.

Although the surge in LLM research is promising, it is
crucial to balance enthusiasm with awareness of existing
challenges. The propensity of LLMs to produce halluci-
nations highlights the need for human oversight in critical
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decision-making processes, underscoring the irreplaceable
value of human judgement, intuition, and expertise. A notable
limitation is the language dependency issue, as most LLMs
are predominantly trained on English data, reducing their
effectiveness with non-English content. Furthermore, the
deployment of LLMs in DF involves significant costs related
to the infrastructure to process evidence. Questions also arise
about the validation of task correctness and quality when
automated by LLMs, as well as the legal and professional
acceptance of results obtained with limited human intervention.

The trustworthiness of LLMs remains a debatable issue that
requires careful attention. It is crucial to establish clear bound-
aries and measures to define LLM trustworthiness. Addressing
this will be a key aspect in the field of DF, ensuring that LLMs
can be trusted for accurate and secure analysis, with the ex-
plainability of their operations being paramount.

Integrating LLMs with automated agents offers a promising
path to automating DF processes, potentially allowing multiple
cases to be handled concurrently for more timely and precise
outcomes. This integration could significantly streamline inves-
tigations. Future research should explore the role of LLMs and
AI in the decision making of DF. It is essential to focus on val-
idating LLM generated outputs to ensure their scope, accuracy,
reliability, and trustworthiness in investigations. More studies
comparing DF outcomes with and without LLM integration are
critical, as they could highlight the benefits of LLMs and the
controlled applicability of LLMs in DF and similar fields.

A future use case involves developing forensic-specific
LLMs fine-tuned for automated examinations. These models
could be optimised for script generation to support investiga-
tions where no existing tools are available, allowing forensic
analysts to create customised solutions on demand. Integrat-
ing AI agents with these models could streamline evidence
handling by allowing investigators to perform complex queries
more intuitively, such as retrieving all messages from a specific
date without the need to craft regular expressions.

In essence, while LLMs offer exciting prospects for the fu-
ture of digital forensics, a balanced approach that integrates
their strengths with human oversight is essential for harnessing
their full potential. Inevitably, LLM-facilitated DF processes
themselves will become the focus of future investigation.
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standing and Addressing Challenges, in: 2024 47th MIPRO ICT and
Electronics Convention (MIPRO), 2024, pp. 2084–2088. doi:10.1109/
MIPRO60963.2024.10569238.

[175] Y. Yehuda, I. Malkiel, O. Barkan, J. Weill, R. Ronen, N. Koenig-
stein, InterrogateLLM: Zero-Resource Hallucination Detection in LLM-
Generated Answers, in: L.-W. Ku, A. Martins, V. Srikumar (Eds.), Pro-
ceedings of the 62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), Association for Compu-
tational Linguistics, Bangkok, Thailand, 2024, pp. 9333–9347. doi:10.
18653/v1/2024.acl-long.506.

[176] Z. Xu, F. Jiang, L. Niu, J. Jia, B. Y. Lin, R. Poovendran, SafeDecoding:
Defending against Jailbreak Attacks via Safety-Aware Decoding, in:
L.-W. Ku, A. Martins, V. Srikumar (Eds.), Proceedings of the 62nd An-

nual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), Association for Computational Linguistics, Bangkok,
Thailand, 2024, pp. 5587–5605. doi:10.18653/v1/2024.acl-long.
303.

20

https://www.sciencedirect.com/science/article/pii/S2666281723002020
https://www.sciencedirect.com/science/article/pii/S2666281723002020
http://dx.doi.org/https://doi.org/10.1016/j.fsidi.2023.301683
http://dx.doi.org/https://doi.org/10.1016/j.fsidi.2023.301683
https://doi.org/10.1145/3637528.3671458
https://doi.org/10.1145/3637528.3671458
http://dx.doi.org/10.1145/3637528.3671458
https://doi.org/10.54097/re9qp070
http://dx.doi.org/10.54097/re9qp070
https://doi.org/10.1007/s43681-023-00289-2
http://dx.doi.org/10.1007/s43681-023-00289-2
http://dx.doi.org/10.1007/s43681-023-00289-2
http://dx.doi.org/https://doi.org/10.1016/j.fsidi.2023.301543
http://dx.doi.org/https://doi.org/10.1016/j.fsidi.2023.301543
https://www.sciencedirect.com/science/article/pii/S266729522400014X
https://www.sciencedirect.com/science/article/pii/S266729522400014X
http://dx.doi.org/https://doi.org/10.1016/j.hcc.2024.100211
http://dx.doi.org/https://doi.org/10.1016/j.hcc.2024.100211
https://doi.org/10.1145/3531146.3534642
https://doi.org/10.1145/3531146.3534642
http://dx.doi.org/10.1145/3531146.3534642
https://link.springer.com/chapter/10.1007/978-981-97-5501-1_7
https://link.springer.com/chapter/10.1007/978-981-97-5501-1_7
http://dx.doi.org/10.18653/v1/2023.findings-emnlp.123
http://dx.doi.org/10.18653/v1/2023.findings-emnlp.123
http://dx.doi.org/10.1109/MIPRO60963.2024.10569238
http://dx.doi.org/10.1109/MIPRO60963.2024.10569238
http://dx.doi.org/10.18653/v1/2024.acl-long.506
http://dx.doi.org/10.18653/v1/2024.acl-long.506
http://dx.doi.org/10.18653/v1/2024.acl-long.303
http://dx.doi.org/10.18653/v1/2024.acl-long.303

	Introduction
	Digital Forensic Context
	Digital Forensic Process Models
	Existing Challenges in Digital Forensics
	Existing Work With LLMs in Digital Forensics


	Background of Large Language Models
	Natural Language Processing
	LLMs
	Architecture of LLMs
	Word to Vectors
	Transformer Models

	Specifically Trained LLMs
	Multi-modal Large Language Models (MLLMs)
	Large Action Models

	Capabilities of Large Language Models
	Programming/Code Generation
	Vision Assistance
	Conversation
	Prompt Engineering
	Autonomous Agents
	Retrieval-augmented Generation
	Limitations and Risks

	Large Language Models For Digital Forensics
	Incident Recognition Phase
	Collection Phase
	Preservation/Acquisition Phase
	Examination Phase
	Analysis Phase
	Reporting Phase
	Other Possibilities
	Discussion on Potential for LLMs in DF

	Challenges and Risks
	Challenges for LLMs in Digital Forensics
	Risks of Integration

	Conclusion

