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Digital forensic test images are commonly used across a variety of digital forensic use cases including
education and training, tool testing and validation, proficiency testing, malware analysis, and research
and development. Using real digital evidence for these purposes is often not viable or permissible,
especially when factoring in the ethical and in some cases legal considerations of working with in-
dividuals' personal data. Furthermore, when using real data it is not usually known what actions were
performed when, i.e., what was the ‘ground truth’. The creation of synthetic digital forensic test images
typically involves an arduous, time-consuming process of manually performing a list of actions, or
following a ‘story’ to generate artefacts in a subsequently imaged disk. Besides the manual effort and
time needed in executing the relevant actions in the scenario, there is often little room to build a realistic
volume of non-pertinent wear-and-tear or ‘background noise’ on the suspect device, meaning the
resulting disk images are inherently limited and to a certain extent simplistic.

This work presents the TraceGen framework, an automated system focused on the emulation of user
actions to create realistic and comprehensive artefacts in an auditable and reproducible manner. The
framework consists of a series of actions contained within scripts that are executed both externally and
internally to a target virtual machine. These actions use existing automation APIs to emulate a real user's
behaviour on a Windows system to generate realistic and comprehensive artefacts. These actions can be
quickly scripted together to form complex stories or to emulate wear-and-tear on the test image. In
addition to the development of the framework, evaluation is also performed in terms of the ability to
produce background artefacts at scale, and also the realism of the artefacts compared with their human-
generated counterparts.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

High-quality digital forensic test images are required across a
range of digital forensic use cases including education and training,
tool testing and validation, proficiency testing, malware analysis,
and the research and development of novel evidence processing
techniques (Garfinkel et al., 2009; Woods et al., 2011). The high
demand for these test images coupledwith the difficulty in creating
them presents a problem in all of the above-mentioned areas of
digital forensics (Garfinkel, 2007). Several collections of device
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images have been publicly released as standardised digital forensic
corpora in the last few years, e.g., the Real Data Corpus (Garfinkel
et al., 2009) and the National Institute of Standards and Tech-
nology's (NIST's) Computer Forensic Data Sets (CFReDS) datasets
(National Institute of Sta, 2019). There are also other examples of
digital forensic test data, e.g., SQLite databases (Nemetz et al., 2018).
Nonetheless, the overall diversity of these corpora is insufficient for
many of the aforementioned use cases (Grajeda et al., 2017).
Grajeda et al. (2017) analysed 715 digital forensic articles published
between 2010 and 2015 and discovered that many of the associated
datasets used in these experiments are not publicly available. The
authors found that, similar to network security dataset research by
Abt and Baier (2014), that many digital forensic researchers
manually produced their datasets, that the datasets are often not
made public after the research is completed, and that there is a lack
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of standardised, labelled datasets available. The authors concluded
that these compounding issues produces “one of the major disad-
vantages facing the cybersecurity/forensics community to this day,
which is low reproducibility, comparability and peer validated
research”.

The current approach taken in the generation of new, scenario-
based, previously unanalysed test images is for an expert (e.g.,
professors, researchers, developers, accreditation bodies, etc.) to
manually create these images. The first step in this process is a
significant planning phase involving the design of a scenario and
planning of the types of artefact that are required, along with
ensuring trained personnel are available to perform the task over
potentially a prolonged period of time. The technical imple-
mentation phase typically commences with the manual creation of
a fresh virtual machine instance, creation of user(s), installation
and configuration of a set of desired applications (e.g., browsers,
instant messaging applications, email clients, file-sharing tools,
etc.). Subsequently, the precise execution of the scripted set of ac-
tions, or ‘story’, is performed (Moch and Freiling, 2009). This pro-
cess is extremely arduous and can typically take days or weeks of
experts' time (Yannikos et al., 2014). This often long drawn-out
process will likely result in a single viable case study (Garfinkel
et al., 2009). Maintaining, indexing, and updating a corpus of dig-
ital forensic images is also a labour-intensive, arduous task
(Garfinkel, 2012). One concern with this manual approach is that
there is typically little time allocated to creating a viable amount of
background noise, wear-and-tear, and other non-pertinent actions
on the device. This means that the need for students (in an edu-
cation context) or newly developed techniques (in a research
context) to cut through the large amount of irrelevant data on a real
system is significantly reduced.

One attempted approach to supplying device images with a
large volume of wear-and-tear is the purchasing of second hand
hard drives, as discussed byMoch and Freiling (2011) in the context
of digital forensic teaching. Bolstered with the global tightening of
data protection guidelines, the legitimate ethical and now in some
cases legal concerns of this approach, this remain a subject of
debate. As a result, using real-world data from second hand hard
drives or previous investigations is not a viable approach in many
instances.

This work aims at addressing the issue of emulating user ac-
tivities and behaviours ensuring forensically realistic traces are
created in the resulting test images e indistinguishable from those
created by regular computer users.

The work specifically makes the following contributions:

� It provides a proof-of-concept framework for generating real-
istic user data inside a disk image.

� It provides several plugins for the framework to emulate user
actions at different levels of complexity, from simple file
copying, to a “Google research session” on a particular topic.

� It collects the network traffic generated by actions on the
machine.

� It documents a method for validating the artefacts generated by
automated user simulation against data generated by a human.

� It discusses in detail the lessons learnt from attempting to
implement this framework including the intrusiveness of tools
on the generated data sets. It also sets out a clear research
agenda for extending this framework to provide major benefits
in digital forensic education, research, and investigations.

The remainder of this paper is structured as follows: Section 2
provides an overview of the related work in the current literature
and also tools available for user activity automation. Section 3 de-
scribes the overall methodology used in the creation of this
2

framework and the software design. Sections 4 and 5 provide the
results and evaluation of the approach. For the purposes of this
paper, the evaluation focused on the component actions (i.e., the
building bricks for more complex stories). Specifically, Section 4
demonstrates the volume of artefacts that can be generated in a
small time period, but that simulate a long period of system use and
background wear-and-tear. Section 5 considers the forensic traces
of the automated approach to artefact generation, versus tradi-
tional human-preformed actions. Section 6 provides a discussion
and evaluation of the work carried out and also describes the many
opportunities for future work in this area.

2. Related work

This section covers some of the related work in this area,
including the needs for datasets, requirements for datasets, and the
several approaches that have been previously explored to avoid the
manual effort required for synthetic disk image generation.

2.1. The need for digital forensic datasets

The need for realistic datasets is best explained by Garfinkel
et al. (2009): “From a training and educational perspective, it is
difficult to overstate the need for realistic data sets. Anyone who
has been on the instructors side of the process will testify to the
huge investment of time that goes into creating realistic forensic
scenarios. Much of this work is not shared broadly and that is
clearly inefficient and wasteful in a relatively small field with
limited budgets.”With the increasing need for artificial intelligence
aided digital forensic investigation (Sanchez et al., 2019; Anda et al.,
2020), there is a corresponding growth in the need for large,
labelled datasets to be used for training these models (Du et al.,
2020). The accuracy and reliability of pre-trained machine
learning/deep learning based models is only as good as the data on
which they are trained (Du et al., 2020).

A number of existing datasets including disk images, mobile
phone dumps, and network captures are available in a Digital
Forensic Corpora,1 but at time of writing there are only eight “full
scenarios” that could be found.

2.2. Desirable characteristics for digital forensic test images

Woods et al. (2011) outline four desirable characteristics of
“realistic” educational corpora and digital forensic test images
(adapted by Scanlon et al., 2017):

1. Answer Keys e these are solutions to the problems posed to
students incorporating guidance as to what evidence could be
located in which digital artefacts.

2. Realistic Wear and Depth e the sample hard drive images
should contain realistic wear patterns, i.e., the hard disk image
being investigated should have regular usage surrounding
email, web browsing, application installations, file creation and
deletion, and downloaded content.

3. Realistic Background Data e a key skill for a digital investigator
to gain is the ability to decipher between pertinent and non-
pertinent data on a machine. The injection of “incriminating”
data should not be obviously the only non-OS/non-application
data stored on the disk.

4. Sharing and Redistribution e as a general guideline, hard disk
images created for the purposes of education should be made
freely available for others to download.
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2.3. Manual disk image generation

This refers to the process described earlier where an expert is
required to carry out all of the actions according to a designed
scenario. In the context of the test image requirements fromWoods
et al. (2011), manual generation does allow answers to be created,
but they need to be manually constructed after the disk image is
finalised e although, the exact actions performed are known and
can be manually documented. Realistic wear-and-tear and back-
ground data is very difficult for this method. However, any actions
that are performed will be realistic as they are carried out by a real
person, albeit pretending to be the user in the scenario. In terms of
distribution, theoretically this is unaffected by the manual process,
but anecdotally, because of the large amount of effort and therefore
cost to create manual disk images, they are considered a valuable
asset to organisations, which may hamper sharing, as identified by
Grajeda et al. (2017).

2.4. Existing approaches for image generation

There are several examples of previous work that have
attempted to overcome this need for manual disk image
generation.

Moch and Freiling (2009) discusses the development of Foren-
sig2, which is subsequently further evaluated in (Moch and Freiling,
2011). Forensig2 allows automated artefact generation of both the
hardware and software level, i.e., it can programmatically configure
the virtual machine inQEMU, including the CPU, network, disks, etc.
It can also carry out actions within the VM, including configuring
partitions, copying files locally and remotely, and also various other
operating system level actions (on Linux), such as installing soft-
ware (using the command line). This work introduces many of the
concepts to be taken forward in any automated disk image gener-
ator, i.e., logging of actions performed to use as a ground truth, the
need for extensibility, and the concept of reproducible randomness
(discussed in Section 6). However, it is difficult to see how the
approach could realistically synthesise all of the actions on a
Windows system caused by for example a user opening a file, which
includes numerous registry artefacts, link file creation, jumplist
entries, potentially Edge browser artefacts, etc. This limited ability
to generate artefacts for a GUI based OS is acknowledged by Moch
and Freiling (2011).

Yannikos et al. (2014) presents ‘model based generation of disk
images’, which focuses on creating a formal model of the scenario
to be built. Practically, the actions that were achieved were:
creating file systems, creating and deleting files, writing raw data to
a disk, downloading a file from the Internet, and disk image import/
export. This would be very effective for file system level in-
teractions, but to generate a realistic disk image that could be used
to teach forensic investigation techniques at all levels of abstrac-
tion, operating system-level artefacts would also be needed and far
higher-level operations would need to be emulated.

More recently the tool EviPlant, described in (Scanlon et al.,
2017), provides solutions to a number of problems, certainly
around distribution of digital forensic images through the use of
‘evidence packages’ and discusses the concept of injecting data into
baseline images. While injecting background noise to a disk image
to increase the content volume of a disk image does at least frus-
trate simple file browsing as a means to find files of relevance to a
scenario, to generate artefacts over multiple artefact types, e.g.,
injecting web history, file system artefacts, event logs, registry files,
that are all evidentially consistent with each other is extremely
difficult. The EviPlant approach, while potentially increasing the
reusability of manual effort, does not address the issue of reducing
the manual effort in creating the evidence packages to begin with.
3

2.5. Summary

There is a clear need for high quality and diverse datasets in
digital forensics. Real data will have its place in testing, but is
difficult to obtain and manage, and is increasingly surrounded by
ethical and legal concerns. Synthetic data is either manually pro-
duced, which is time-consuming, but does provide realistic arte-
facts for the actions performed. However, it is difficult to produce
the volume of actions needed to produce a realistic “full-system”

with a realistic, long usage history. Automated approaches have
focused on injecting artefacts into disk images, which allows for
larger scale artefact generation, but once a detailed examination is
conducted, the limited realism of the disk image artefacts is likely
to be revealed. Otherwise automation based approaches have
delivered only command-line level user emulation, which cannot
produce a disk image containing all the relevant artefacts needed to
properly represent modern Windows based systems. This research
aims to address these problems and provide synthetic, automated,
realistic, digital forensic artefacts at scale.

3. Methodology

3.1. Overall design

The overall aim of the research is to provide an automated
approach to generating disk images for research, teaching, or the
validation of digital forensic tools or techniques. As a result of the
limitations of injecting files into a disk image discussed earlier, the
high-level approach is to attempt to programmatically automate
the actions of a user and allowing the system to generate realistic
artefacts, rather than trying to artificially create them.

The types of actions that can be performed on a target VM are
therefore split into two categories:

� Machine Control Actions performed outside of the VM, e.g.,
power on the VM, unsafe shutdown the VM (i.e., “pull the plug”)
and adjust the BIOS time.

� External User Actions performed from outside the VM, e.g., copy
or move files, perform a Google search, shutdown the VM in a
controlled manner.

� Internal User Actions performed inside of the VM, e.g., copy or
move files, perform a Google search, shutdown the VM in a
controlled manner.

An overview of the system design is shown in Fig.1. At present, if
we execute code inside the VM to automate internal user actions,
there will be inevitable traces left on the disk of the VM that would
not be present with human-only generated data. However, building
disk images inside virtualisation platforms, which is common
practise, is at some level inconsistent from a real system (for
example virtual hard disk identifiers, virtual USB controllers, etc.)
Certainly in educational assignments/proficiency test, this can be
covered using the phrase “During your analysis, please ignore any
virtualisation artefacts that are part of the data generation process”.
Students/Test takers could also be instructed to ignore results of the
artefact automation process, if these artefacts can be identified,
minimised, and segregated. This is discussed further in Section 5.

3.2. Choice of technologies

The virtualisation technology used for this research was Vir-
tualBox, owing to its cross platform compatibility. This could also
be said for VMware, but as VirtualBox is freely available, this
approach could be used by any organisation regardless of any
budget limitations. Qemu is another option, but the setup process is



Fig. 1. Overview of the Image Generation Approach: the input is a list of user actions, the script running on the host controls the guest machine boot, performing internal and
external actions and shut down. In the end, a forensic image with user traces in the guest OS is generated alongside the log recording the actions executed.
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slightly more complex and the intention was to produce images
automatically that could be easily later supplemented with later
human-generated actions.

As per Moch and Freiling (2009), the automation is performed
using a series of Python scripts with some additional libraries used
to automate user actions. Python was chosen for its advantages for
rapid prototype development and the large range of libraries
available for emulating user activity.

The operating system chosen as the guest is Microsoft Windows
as this still represents the majority of end user computers2, and
therefore the majority of systems seen in digital forensic
laboratories.
3.3. Existing automation options

When implementing emulated user actions, there are a number
of options available. At a high-level these include:

� Application Programming Interfaces (APIs) e For example,
pywinauto3 facilitates the automation of the Windows GUI us-
ing the Win32 API. It allows Pythonic interaction with GUI
components, e.g., to save a file in Notepad:

app.UntitledNotepad.menu_select ("File->SaveAs")

� Simple Mouse and Keyboard Control e This allows injection of
keyboard input, mouse movement and clicks at specific
coordinates.

� Graphical User Interface (GUI) Interaction e this technique is
more advanced than ‘blind clicks' above, and can also visually
process any given application and programmatically execute
specific mouse and keyboard actions. Examples of GUI based
automation tools include Sikuli (Yeh et al., 2009) and PyAuto-
GUI. Sikuli enables screenshots of GUI control elements to be
taken (such as a toolbar button or icon) which can be included in
a sequence of actions in order to script complex interactions
with any application. In a similar vein, PyAutoGUI4 is a cross-
platform GUI automation tool designed for programmatically
controlling the mouse and keyboard. One benefit to this
approach over Macros is that the script is resilient against any
specific control element not appearing in precisely the expected
coordinates on screen.
2 87.36% at time of writing (https://netmarketshare.com).
3 https://pywinauto.readthedocs.io/en/latest/.
4 https://github.com/asweigart/pyautogui.
5 https://www.seleniumhq.org.
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� Browser Automation e There are also application specific
automation tools that could be used, for example Selenium5 that
automate most major web browsers.
3.4. Actions to automate

A small subset of user actions have been selected for automation
in this proof-of-concept in order to test the validity and to show the
potential of this approach. They can be broadly categorised into
component and compound actions. The component actions are small
individual actions that can be performed on a system, e.g., a file
copied or moved, application launched, machine shutdown, etc.
Compound actions are a set of component actions to be performed
that may typically run over several minutes or hours, for example a
“Google research session” would involve opening a browser,
searching for a topic, viewing results by going back and forth to the
search results. “Browsing the news” would involve opening a
browser, visiting a news site and reviewing several articles of the
day. Examples from both category have been implemented and also
evaluated in terms of their “intrusiveness” to the disk image and
realism compared to human-only actions.
3.5. Implementation of VM external actions

Two actions have been considered here: booting the VM and
setting the BIOS time. Since we are using VirtualBox, the VBox-

Manage tool can be used to manipulate the VM.
Using VBoxManage, the VM can be booted using the command:
vboxmanage eenologo startvm [vm_name]

In addition, the BIOS time of the VM can be set with the
command:

vboxmanage modifyvm [vm_name]

eebiossystemtimeoffset [msec]

The parametermsec specifies a fixed time offset, in milliseconds,
of the guest relative to the host time, which can be either a positive
or negative offset. These external actions are necessary since ac-
tions such as booting the VM can obviously not be performed from
inside the VM if the VM is not powered.

If network traffic associated with the activities is to be collected,
the following command will create a.pcap dump of all packets:

vboxmanage modifyvm [vm_name] eenictrace[adapt-

er-number] on eenictracefile[adapter-number]

file.pcap

Snippet 1 shows the developed method to set the system date
and time for action emulation.

https://netmarketshare.com
https://pywinauto.readthedocs.io/en/latest/
https://github.com/asweigart/pyautogui
https://www.seleniumhq.org
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3.6. Implementation of VM internal actions

Causing actions to occur within the VM is slightly more com-
plex, but again can be partly achieved using VBoxmanage. VBox-
manage allows you to execute a program inside the VM and also
pass parameters to it. An example call to launch notepad.exe is
shown below. Note the need to also pass parameters for the user
account and user password to enable this.

vboxmanage eenologo guestcontrol [vm_name] run

eeusername [username]eepassword [password]eeexe {}

ee “notepad.exe”

However, we require more complex interaction than simply
launching a program so in the TraceGen framework, the Python
interpreter is invoked inside the VM, referencing a specific internal
script, along with some arguments. For example:

vboxmanage eenologo guestcontrol [vm_name] run

eeusername [username]eepassword [password]eeexe {}

ee ”python.exe” [internal_script] [script_args]

This approach has some prerequisites. Firstly Python and any
required packages must be preinstalled in the VM and the scripts to
be run need to be made accessible to the VM. In the examples
outlined in this paper, the Python scripts were added to a second
drive (mapped to a specific drive letter in the VM), which can be
detached from the VM on completion of the scenario generation.
Anybody analysing the disk image can be told to ignore that specific
drive letter.

In terms of specific internal actions discussed in this paper, the
first component action is a file copy. The most basic way that this
can be achieved is using the Python shutil module to copy a file
from a source path to a destination. This is executed using the in-
ternal script file_copy.py. The resultant forensic artefacts of this
action are discussed in Section 5. However, it is clear at this point
that this does not reflect the manner by which a user in a graphical
operating system would really copy a file from one destination to
another. While there are many ways to achieve this objective, one
option is to open a folder (via a double click of the folder icon), use
the keyboard shortcut ‘Ctrl þ C’, then open another folder, and use
‘Ctrl þ V’. The consequences of each of these alternatives are dis-
cussed in Section 5.

A more complex internal action, a compound action, is a Google
research session. This represents using Google to search for a
particular keyword, and then viewing a subset of the results over a
defined period of time. This could be for background noise gener-
ation or part of the relevant aspect of the scenario, e.g., researching
wireless hacking tools. Severalmethods were considered to achieve
this. The first method considered was to launch Chrome by
injecting a press of the Windows key, keystrokes to type ‘Chrome’
followed by the enter key, as shown in Snippet 2. It then injects
keystrokes into the address bar, which by default in Chrome per-
forms a Google search. In parallel, the content of the search result
page is retrieved, scraped with the Beautiful Soup6 library and the
resultant links also injected into the address bar, resulting in visits
to those pages. However, this does not reflect the reality of the links
being clicked by a user as each of the links are typed, rather than a
link clicked. This therefore may not result in realistic associated
artefacts. As an alternative, a browser extension called SendKeywas
installed, which can be configured to allow keyboard navigation of
Google search results. With this in place, the keyword can be
injected into the Chrome address bar (performing a Google search
for that keyword), then the results selected and clicked using
keyboard shortcuts, as demonstrated in Snippet 3.

As a second example, rather than using the file copying
6 https://www.crummy.com/software/BeautifulSoup/.
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component action to transfer user data onto the virtual machine,
where care is needed to ensure timestamps are consistent with the
scenario, anothermethod is to generate content directly on the VM.
This is another example of an internal compound action, and uses
the pywinauto module, which in turn uses the Win32 API to
interact with applications on the VM and can be used to populate a
disk image with content. This plugin can receive two arguments at
present, the content to be ‘typed’ into the notepad file, and the path
on the virtual machine that the file should be saved. The code used
to achieve this is shown in Snippet 4.

3.7. Building stories

For the purpose of this work, the list of actions to be performed
on a VM is termed a “story”. Stories are currently captured in in-
dividual Python scripts but the entire set of actions is contained
within a single list, so using CSV, TSV or some other standard
representation is trivial.

Each action to be performed consists of:

1. Date and time to perform action.
2. Action to perform.
3. Arguments related to the action to perform.

There are two modes by which a story can be executed. The first
is live simulation mode. In this mode, the controlling script checks
the time for the next action to be performed against the host
(assumed to be correct) and the actions are performed when the
scheduled time arrives. This means that the actions are carried out
in real-time, but in an automated way. This mode provides the
advantage that as all actions are performed in real time resulting in
all timestamps, whether from the virtualised system or remotely
fetched content, will be consistent. The disadvantage is that to
generate several months activity, it would take several months.
Therefore, the second mode is compressed-time simulation. In this
mode, for each action, the clock of the virtual machine is adjusted to
the specified time, then the action carried out. This has the disad-
vantage that there will be timestamp artefacts that are not
consistent, but it does allow a large amount of activity to be syn-
thesised in a very short time. A demonstration of this is shown in
Section 4.

3.8. Virtual machine configuration

In addition to the internal and external scripts and the stories, at
present, the VMmust also be configured in a specific manner that is
conducive to simulated user actions. The following changes were
made to the VM to allow reliable user action emulation: 1), install
VirtualBox Extension Pack on Host OS; 2), install Guest Additions on
Guest OS; 3), install Python on Guest OS; 4), install related Python
libraries and any other dependencies, e.g., SendKey; 5), install app
needed in the action emulation on Guest OS, e.g., Google Chrome.
There are also several other more subtle changes that are needed.
For example, for now, it is necessary to auto-log in the user, rather
than providing a password. Also, as the system may be running for
several days or hours, the power settings of the guest and the host
were modified to avoid sleeping or powering off displays as this
could interfere with the user emulation process.

4. Results: continuous usage trace generation

This section demonstrates the volume and complexity of the
artefacts that can be generated and considers the machine and
human time costs of each approach. For this test the compressed-
time simulation mode of the tool was used. Setting the system time

https://www.crummy.com/software/BeautifulSoup/


Table 1
Event counts from different sources.

Event Source Before Story After Story Increment

EVT 183,628 246,653 63,025
REG 81,181 125,598 44,417
WEBHIST 27,869 30,689 2,820
Log 2,753 3,160 407
PE 1,019 1,032 13
LNK 621 852 231
OLECF 348 348 0
Total 297,419 408,332 110,913
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before booting the machine enables the emulation of usage over a
much longer period, i.e., weeks, months or years of activity
emulated in just hours or days. An input CSV file defines the actions
to be executed on the machine. A random method can be used to
make sure repeated operations timewould not be exactly the same.
The same component or compound actions can result in different
artefacts being generated due to the specified arguments, e.g.,
which file to open.

Two experiments have been performed:

1. Setting the system time to a point in the past each time repeat
simple actions: 1) set system time; 2) boot VM; 3) create
notepad file; 4) shut down VM.

2. Setting the system time to a point in the future, repeat simple
more actions each time: 1) set system time; 2) boot VM; 3)
create notepad file; 4) copy *.png file from one folder to
another; 5) use browser 6) run app WinSCP and login; 4) shut
down VM.

How many times to repeat machine boot actions and what ac-
tions to do each time the machine is booted are specified in the
input file, as shown in Fig. 2. Continuous running and action
execution is easy to specify, i.e., repeat the instruction in the CSV
and change the parameters if desired. As observed from performing
the experimentation, when an exception occurs, the process con-
tinues to perform to the next action. For background noise gener-
ation, this situation is acceptable; if the running is for emulating
criminal actions, the audit log file should be checked after the
generation process.

4.1. Comparison method

For analysis the traces left on the machine, Plaso is used for
creating a “Super Timeline”. The generated timeline consists of
events extracted from sources on different abstract level (e.g., file
system, windows logs, registry, chrome history, etc.). Two disk
images of the VM were made, one before the automated action
emulation, and one after. And then two timelines were generated
and compared.

4.2. Timeline comparison

Pandas is used to analyse the timeline generated from the test
images. The generated timeline was a 2.5 GB CSV file. Due to the
executed story relating to 2019, the first step operation on the
timeline is to use a filter only focusing on timestamps from 2019.
From the generated timeline, one important property is the source
of event. In this experiment, there are eight categories, as listed in
Table 1. The number of timestamps are also shown in this table,
both before and after the automated actions were executed. Win-
dows Event (EVT), Registy (REG), Web History (WEBHIST), Log
(LOG), Portable Executable (PE), Link (LNK) can be seen to have
Fig. 2. Sample input CSV file.
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increased. The Number of Object Linking and Embedding (OLE) had
no changes. As one might expect, using the Windows OS changes
the records in EVT, REG, LOG, PE, etc, running applications changes
theWindows REG entries and Chrome usage changes theWEBHIST.

One interesting analysis is on the diverse value generated for
each property. The diverse value for the date relates to how many
days thismachinewasused, i.e., as longas themachine is beingused,
correlating timestampsare generated. Thevalue counts forfile name
represents howmany different file names are in themachine. Inode
counts represents thefile number onfile system level. Table 2 shows
the value counts for each of these different properties. Before the
story was executed, in the generated timeline, the diversity of
timestamp dates is 189. After the story's execution, it is 204. The
increment on the count of file names is 11,099 representing the
number of new were generated during the story's emulation.

Two continuous running test were conducted. The first is to set
the system date and time in the past and the second is to set it to a
point in the future. These are date in September 2019 and October
2019 respectively. Figs. 3 and 4 shows the number of event changes
detected for each day. It can be seen that the day configured in the
story results in corresponding changes on the timestamp. Also, as
can be seen, the number of timestamps increased after the story's
execution emulation. This is a result of later actions updating the
same specific files modified by previously executed actions.

4.3. Summary

The experimentation and analysis presented in this section
verified that the TraceGen framework can operate in a viable
manner. This framework enables 1), a large amount usage traces
generated in a compressed time period, 2), usage traces generated
at a specific date in time, and 3), the generated actions are in a
diverse set of categories.

5. Results: forensic traces of automation

This Section examines the forensic artefacts left as a result of the
automated approach and compares them with ‘human-generated’
activity.

5.1. Comparison method

To determine if the actions generated using the automated
approach are consistent with ‘human-generated’ actions, the
following methods were used:
Table 2
Value counts of different properties.

Event Property Before Story After Story Increment

date 189 204 15
file name 90,941 102,040 11,099
inode 31,350 36,139 4,789



Fig. 3. Event counts of each day in September.

Fig. 4. Event counts increment of each day in October.
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1. A disk image of the VM was taken.
2. A Procmon capture was started.
3. The action was performed (automated/human).
4. The Procmon capture was stopped and saved.
5. A disk image of the VM was taken again.

To analyse the resulting data, first the Procmon logs were
inspected and the files and registry changes were recorded7. The
final disk image was also processed using Plaso to generate a
timeline of activity that could be inspected in detail around the
timestamp of the action performed.
5.2. Results: running a simple script using VBoxManage

For this initial test, a ‘hello world’ Python script was written and
added to the VM. This was scheduled to run using the TraceGen
software and Procmon was used to record changes made to the
system. While there were thousands of events recorded, most were
7 The Procmon filters used were: operation is: WriteFile, RegDeleteKey, RegDe-
leteValue, RegRenameKey, RegSetInfoKey, RegSetValue, RegCreateKey. Also all
default ‘exclude’ filters were removed to ensure nothing was missed.
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read operations. Filtering the Procmon events by the filters
described earlier indicated changes to the SAM registry hive.
Furthermore, generating a timeline with Plaso also indicated
similar file changes, and changes to the security.evtx event log.8

To investigate in more detail, an additional experiment was
performed where the SAM registry hive was examined before and
after the ‘hello world’ action was automatically executed. Looking
at the ‘F’ value in the SAM file for the virtual machines's user, the
last login time was indeed updated to the time of the scheduled
action, and the login count was also updated by one. Examining the
Security Event log, related events were also found showing login
events (4624) and logoff events (4634) that originate from the
VBoxService.exe process. This shows that running processes in
the virtual machine using VBoxManage is not unintrusive, but us-
ing this experimental method, the effects can be measured, and if
appropriate, ignored.

5.3. Results: automated file copying

This is the component-level action discussed above that takes an
existing file and copies it to a new location. The automated
approach for file copying achieves this using the Python shutil

module. The changes identified using Procmon were all file system
related, i.e., the creation of the new copied file, but also changes to
$LogFile and the $MFT. This was also confirmed in the Plaso
timeline output.

However, the typical set of actions for a human to copy a file
from one location to another would be to open a folder location,
perhaps use Ctrl-C to copy the file, browse to another folder, and
use Ctrl-V to paste it in place. This manual approach was also tested
and the artefacts recorded. Using this manual method, there were
additional artefacts generated at the operating system level of
abstraction that are not consistent with the simple file copy above
using Python. For example, Procmon recorded registry changes to
the ShellBag registry keys in USRCLASS.DAT resulting from
accessing the two folders that contain the files copied. These ar-
tefacts can be of great benefit when identifying recent locations
accessed by a user, so neglecting to generate themwould remove a
significant investigative lead, which will be evenmore important as
we increase the amount of background noise on the generated disk
images.

This difference shows the careful consideration that is necessary
to exactly replicate the set of user actions that will perform the
action to be simulated. In this case, the process still needs
improvement as using a simple shutil operation, relevant oper-
ating system level artefacts are not generated that could have an
effect on expert forensic analysis.

5.4. Results: automated ‘Google research session’

This is a compound-level automation that opens Chrome, con-
ducts a Google search for a term (‘hello world’ in this example) and
views several of the search results. The analysis of this automated
action was slightly different to the previous. The Plaso output for
the period of automated Chrome browsing contained 1722 entries,
including file creations, e.g., cached items from browsing, registry
changes, e.g., user assist from launching Chrome, USN journal en-
tries related to other file changes, and browser history, cache and
cookie entries. The remainder of the analysis here focuses specif-
ically on the browser history.
8 There were other files also listed: Windows/System32/wdi/LogFiles/

BootCKCL.etl and $LogFile, but these were inspected and have not yet been
found to be relevant.
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The Chrome history file was exported and examined in a SQLite
browser. As shown in Fig. 5 (the URLs table), there are entries for the
Google search for ‘helloworld’ (row 2), plus two other related pages
(rows3 and 4). If Fig. 6 (the visits table) is also considered, the search
itself has visit id ¼ 3 (referring to URL 2), followed by the visit to
Wikipedia,which is visit 4 (URL3),which evenhas a from_visit entry
of 3. This shows that the full breadcrumb trail of link following is
maintained even with the automated web browsing that makes up
the user emulation. In a more general sense, even though there are
additional artefacts related to running scripts and a browser
extension installed (which could be filtered out), with care, it is
possible to emulate user actions and create detailed artefacts that
are the same as if a real user were carrying out the actions.

While this is a limited analysis, extending this analysis to the
Current Tabs file, the cache, artefacts left from the SendKey
extension, and all other 1,722 changes identified by Plaso, is outside
the scope of this paper. Furthermore, it does not actually lend itself
to this sort of manual analysis, which would be incredibly time-
consuming and error prone. This, therefore, opens up a new
research problem of trying to automatically compare the artefacts
left from two sequences of actions, one manually performed by a
user, and one automated. This would allow verification of individ-
ual automated actions to check that they are an accurate simulation
and do indeed generate artefacts that are representative of real-
world actions, and can then be packaged into stories.
6. Discussion, evaluation, and further work

As shown in Section 4, the TraceGen framework can be run in a
mode such that with a small amount of input from a user to create
the story to be generated, and a relatively short amount of machine
time, it is possible to generate a large number of artefacts, including
content, as well as file, operating system and application time-
stamps that span a much longer history of the virtual machine.
Section 5 has also shown that while care does need to be taken that
any automated actions do actually reflect what happens when a
real user carries out the same action, it is possible to compare the
two, and to some degree of abstraction the artefacts can be made
consistent.

Despite the successful demonstrations and artefact comparisons
discussed in Sections 4 and 5, there are several limitations to the
current prototype and approach.

Even though it is possible to measure the artefacts that are
inconsistent between the approaches, these differences do exist.
Examples discussed can broadly be grouped into two categories.
The first group are limitations of the individual internal scripts in
terms of mirroring the artefacts left by real user actions, e.g., the file
copy example that does not generate operating system artefacts,
such as Shellbag entries. This is due to over-simplification in the
user automation. This can be overcome by firstly identifying that
there are differences, then finding alternative or additional auto-
mation mechanisms that do create the expected artefacts. Sec-
ondly, the overall approach of external control running internal
scripts, which requires a login and therefore each process that is
run updates the user login count.
Fig. 5. The urls table from the Chrome browser history showing a
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Both of these are anticipated to be overcome in the next gen-
eration of the framework (which will be released as an open source
tool). As a result of attempts to generate realistic file copying ar-
tefacts at the operating system level, the GUI automation tools
Sikuli and pywinautowere tested. However, at present neither offer
the flexibility needed to provide an arbitrary filename and allow
GUI manipulation that would open a folder containing that file, and
then copy it to another folder. Therefore, the next stage of the work
involves development of bespoke computer vision approaches that
can be used for the specific purposes of automating user actions
that are of value to generating synthetic forensic disk images, and
also validating that automated actions completed successfully. The
gold standard for this work is full external control of the guest
operating system from the host, resulting in no internal artefacts
that relate to the automation. Several components are already in
place, i.e., stories, sets of actions, external keyboard control, ability
to screenshot the guest, etc, but additional capabilities for mouse
control and the computer vision components need to be developed
further.

There are also limitations to each of themodes inwhich the user
automation can be run. As discussed in Section 3.7, the software can
be run in either live-simulationmode or compressed-timemode. For
the former, it does have the advantage that all timestamps that will
be generated within the disk image will be consistent with the
scenario since the VM is in-sync with the host and the real-world
time. However, this does have the limitation that the software
must be run for much longer, in fact, it must be run in real time for
the period to be simulated. However, it should be reiterated that
this is machine time, not human interactions, which is a significant
cost and effort difference. However, in recognition that in some
cases the correctness of some of the detailed timestamps may not
be of interest and simpler disk images just with large volumes of
artefacts need to be generated, the compressed-time mode allows
this. However, there are likely to be detectable timestamp in-
consistencies in the data generated. To identify and quantify both of
the above differences, a comprehensive method also needs to be
developed to easily validate the actions left by automated actions,
against those left by human-generated actions.

The specific implementation that has been developed also has
several limitations. Of all the desirable user actions for automation
within a scenario, only a subset have been implemented and
evaluated for realism against human-generated actions. However,
we have documented the approach used to conduct that evaluation,
and demonstrated examples of how the automation can be
changed to better represent a real-life action. More further work is
also required in this area and an automated way of comparing the
traces left by a real-life action against the machine generated set.

The implementation also has limitations in the expression of the
stories. At present the main format for expressing the events to be
carried out contains absolute times, i.e., run this action at this
specific time. It is likely that a more flexible approach will need to
be adopted for all of the potential use-cases of the TraceGen
framework. For example, supporting relative times, i.e., run this
command X minutes after the previous, or introducing random-
ness, e.g., run this command between X and Y seconds after the
Google search for ‘hello world’, and two follow-up page visits.



Fig. 6. The visits table from the Chrome browser showing not only the detail of the individual visits, but that the Google search results page and the subsequent pages visited are
recorded.

Snippet 1. This method is to set the system time to a the given datetime

Snippet 2. Example usage of the pywinauto module to launch Chrome by opening the
Start Menu and typing ‘Chrome’ followed by the enter key.

Snippet 3. Example usage of the SendKey browser plugin to allow keyboard control of
search results. This allows automated opening of several links that result from a Google
search.

Snippet 4. Example usage of the pywinauto module to generate a new notepad file in
a location on disk with customised content.
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previous one. This is however contrary to the proposal in (Moch
and Freiling, 2009) that discusses reproducible randomness,
which suggests that a two stage approach may be better where
fixed-time scripts are produced by another script that generates the
9

random element. However, the exact reproducible nature of the
artefacts generated cannot be fully supported in this approach, e.g.,
in situations where web browsing is performed, it cannot be
guaranteed that the content viewed (and cached) will be consistent
from one run of the story to the next.

However, despite the limitations of the current proof-of-
concept, this research has demonstrated that this approach as
numerous advantages. If we consider the benefits of synthesised
data sets in general, they are obviously free of the ethical concerns
around distributing real data, although they may still have copy-
right issues 1. In the case of this work, we sidestep the copyright
issues as we distribute user simulation software, and a set of stories
that cause certain actions to be performed at certain times,
enabling the organisation to generate their own images. The
copyright issue is then the responsibility of the organisation
running the scripts to ensure that their operating system used
within the VM is correctly licensed.

The primary advantage of machine generated disk images are
that a large amount of human time investment is not required, and
this has been argued in previous work that focuses on injecting
content into baseline disk images. The specific advantage offered in
this work is a significant improvement in terms of the realism of the
data generated. This approach has much more focus on metadata
and its importance in event reconstruction, over injecting and
hiding specific content. If we consider the Google search browsing
example, it might be possible to inject all the correct entries into
the relevant databases, JSON files, and inject the corresponding
cached files into the file system, but it is extremely difficult and is
highly sensitive to version changes in the application. The approach
of emulating the user, if donewith care, is guaranteed to produce all
of the correct artefacts, and is less sensitive to version changes,
although depending on the emulation technologies in use may be
sensitive to GUI changes of any application automated.

This research provides potential benefits in three areas: edu-
cation, research, and practitioner work. In education, disk images
are necessary for use in practical exercises and assessments.
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Production of these disk images is a time consuming and therefore
an expensive process. Use of this method would allow realistic disk
images to be created with far less investment. In research, partic-
ularly in areas where attempts are being made to use machine
learning for artefact extraction and event reconstruction, having
disk images with suitable ‘background noise’ that contains realistic
data with all of the detailed metadata, and having a machine
readable log that represents the ground-truth of actions carried
out, would be extremely valuable. Finally, in the practitioner
community, with new requirements to validate the results from
tools, being able to quickly and easily generate disk images with
known content and known event histories would allow more
thorough, extensive, and reliable tool testing. In all three areas this
approach would generate realistic images, and, importantly, with a
known set of performed actions and data, i.e..,ground-truth.

6.1. Conclusion

While the work presented in this paper is a proof of concept, the
research has shown that a better approach to automated disk image
generation is possible, and that it could have significant benefits in
the areas of digital forensic teaching, research, and tool and process
validation. While there is still a long way to go, this research has
highlighted the problems with the existing approaches, has pro-
posed and tested a more ‘user emulation’ focused approach and
shown the advantages in terms of realism and flexibility of the data
that can be generated.
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